A035671 Number of partitions of n into parts 7k+5 and 7k+6 with at least one part of each type.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 2, 0, 0, 1, 1, 3, 2, 3, 1, 1, 3, 3, 6, 5, 5, 3, 3, 7, 8, 11, 9, 8, 7, 9, 15, 15, 19, 16, 15, 16, 19, 27, 28, 32, 28, 27, 32, 36, 48, 48, 52, 49, 49, 58, 65, 80, 81, 85, 84, 84, 101, 111, 131, 132, 137, 138, 143, 169, 184, 208, 213
Offset: 1
Keywords
Links
- Robert Price, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
nmax = 78; s1 = Range[0, nmax/7]*7 + 5; s2 = Range[0, nmax/7]*7 + 6; Table[Count[IntegerPartitions[n, All, s1~Join~s2], x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* Robert Price, Aug 15 2020 *) nmax = 78; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(7 k + 5)), {k, 0, nmax}])*(-1 + 1/Product[(1 - x^(7 k + 6)), {k, 0, nmax}]), {x, 0, nmax}], x] (* Robert Price, Aug 15 2020 *)
Formula
G.f.: (-1 + 1/Product_{k>=0} (1 - x^(7*k + 5)))*(-1 + 1/Product_{k>=0} (1 - x^(7*k + 6))). - Robert Price, Aug 15 2020