A035673 Number of partitions of n into parts 8k and 8k+2 with at least one part of each type.
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 4, 0, 4, 0, 4, 0, 4, 0, 10, 0, 11, 0, 11, 0, 11, 0, 22, 0, 25, 0, 26, 0, 26, 0, 44, 0, 51, 0, 54, 0, 55, 0, 84, 0, 98, 0, 105, 0, 108, 0, 153, 0, 178, 0, 193, 0, 200, 0, 269, 0, 313, 0, 341, 0, 356, 0, 459, 0, 531, 0, 582, 0, 611, 0
Offset: 1
Keywords
Links
- Robert Price, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
nmax = 81; s1 = Range[1, nmax/8]*8; s2 = Range[0, nmax/8]*8 + 2; Table[Count[IntegerPartitions[n, All, s1~Join~s2], x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* Robert Price, Aug 12 2020 *) nmax = 81; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(8 k)), {k, 1, nmax}])*(-1 + 1/Product[(1 - x^(8 k + 2)), {k, 0, nmax}]), {x, 0, nmax}], x] (* Robert Price, Aug 12 2020 *)
Formula
G.f.: (-1 + 1/Product_{k>=0} (1 - x^(8*k + 2)))*(-1 + 1/Product_{k>=1} (1 - x^(8*k))). - Robert Price, Aug 12 2020