This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035675 #16 Aug 17 2020 07:10:28 %S A035675 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,4,0,0,0,4,0,0,0,10,0,0,0,11,0, %T A035675 0,0,22,0,0,0,25,0,0,0,44,0,0,0,51,0,0,0,83,0,0,0,98,0,0,0,149,0,0,0, %U A035675 177,0,0,0,259,0,0,0,309,0,0,0,436,0,0,0,521,0,0,0,716,0,0,0,857,0,0 %N A035675 Number of partitions of n into parts 8k and 8k+4 with at least one part of each type. %H A035675 Robert Price, <a href="/A035675/b035675.txt">Table of n, a(n) for n = 1..1000</a> %F A035675 G.f.: (-1 + 1/Product_{k>=0} (1 - x^(8*k + 4)))*(-1 + 1/Product_{k>=1} (1 - x^(8*k))). - _Robert Price_, Aug 13 2020 %t A035675 nmax = 90; s1 = Range[1, nmax/8]*8; s2 = Range[0, nmax/8]*8 + 4; %t A035675 Table[Count[IntegerPartitions[n, All, s1~Join~s2], %t A035675 x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* _Robert Price_, Aug 13 2020 *) %t A035675 nmax = 90; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(8 k)), {k, 1, nmax}])*(-1 + 1/Product[(1 - x^(8 k + 4)), {k, 0, nmax}]), {x, 0, nmax}], x] (* _Robert Price_, Aug 13 2020 *) %Y A035675 Cf. A035441-A035468, A035618-A035674, A035676-A035699. %K A035675 nonn %O A035675 1,20 %A A035675 _Olivier Gérard_