This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035676 #18 Aug 17 2020 07:10:15 %S A035676 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,3,0,1,0,0,3,0,1,6,0,3,0,1,7, %T A035676 0,3,11,1,7,0,3,14,1,7,18,3,15,1,7,25,3,15,30,7,28,3,15,44,7,29,47,15, %U A035676 51,7,29,72,15,54,73,29,87,15,55,116,29,94,111,55,144,29,97,180,55 %N A035676 Number of partitions of n into parts 8k and 8k+5 with at least one part of each type. %H A035676 Robert Price, <a href="/A035676/b035676.txt">Table of n, a(n) for n = 1..1000</a> %F A035676 G.f.: (-1 + 1/Product_{k>=0} (1 - x^(8*k + 5)))*(-1 + 1/Product_{k>=1} (1 - x^(8*k))). - _Robert Price_, Aug 13 2020 %t A035676 nmax = 83; s1 = Range[1, nmax/8]*8; s2 = Range[0, nmax/8]*8 + 5; %t A035676 Table[Count[IntegerPartitions[n, All, s1~Join~s2], %t A035676 x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* _Robert Price_, Aug 13 2020 *) %t A035676 nmax = 83; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(8 k)), {k, 1, nmax}])*(-1 + 1/Product[(1 - x^(8 k + 5)), {k, 0, nmax}]), {x, 0, nmax}], x] (* _Robert Price_, Aug 13 2020 *) %Y A035676 Cf. A035441-A035468, A035618-A035675, A035677-A035699. %K A035676 nonn %O A035676 1,21 %A A035676 _Olivier Gérard_