This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035678 #21 Aug 17 2020 06:48:18 %S A035678 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,3,0,0,0,0,0,1,3,6,0,0,0, %T A035678 0,1,3,7,11,0,0,0,1,3,7,14,18,0,0,1,3,7,15,25,29,0,1,3,7,15,28,43,44, %U A035678 1,3,7,15,29,50,69,67,3,7,15,29,53,84,110,99,7,15,29,54,91,138,168 %N A035678 Number of partitions of n into parts 8k and 8k+7 with at least one part of each type. %H A035678 Robert Israel, <a href="/A035678/b035678.txt">Table of n, a(n) for n = 1..5000</a> %F A035678 G.f.: (-1 + 1/Product_{k>=0} (1 - x^(8*k + 7)))*(-1 + 1/Product_{k>=1} (1 - x^(8*k))). - _Robert Price_, Aug 13 2020 %p A035678 np:= combinat:-numbpart: %p A035678 NP:= proc(n,m) if m > n then np(n) else np(n,m) fi end proc; %p A035678 f:= proc(n) local r0; %p A035678 r0:= (-n) mod 8; %p A035678 add(np(s)*add(NP((n-8*s-7*r)/8, r), r=r0 .. floor((n-8*s)/7), 8), s=1..floor((n-1)/8)) %p A035678 end proc: %p A035678 seq(f(n),n=1..100); # _Robert Israel_, Apr 06 2016 %t A035678 nmax = 86; s1 = Range[1, nmax/8]*8; s2 = Range[0, nmax/8]*8 + 7; %t A035678 Table[Count[IntegerPartitions[n, All, s1~Join~s2], %t A035678 x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* _Robert Price_, Aug 13 2020 *) %t A035678 nmax = 86; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(8 k)), {k, 1, nmax}])*(-1 + 1/Product[(1 - x^(8 k + 7)), {k, 0, nmax}]), {x, 0, nmax}], x] (* _Robert Price_, Aug 13 2020 *) %Y A035678 Cf. A035441-A035468, A035618-A035677, A035679-A035699. %K A035678 nonn %O A035678 1,23 %A A035678 _Olivier Gérard_