A035685 Number of partitions of n into parts 8k+2 and 8k+3 with at least one part of each type.
0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 2, 1, 4, 2, 4, 4, 5, 4, 7, 5, 10, 7, 12, 11, 14, 13, 18, 15, 24, 19, 28, 27, 33, 31, 42, 36, 51, 45, 60, 58, 71, 68, 87, 79, 103, 96, 120, 118, 141, 137, 169, 159, 197, 189, 228, 226, 266, 262, 314, 302, 362, 355, 416, 416, 482, 478, 561, 550
Offset: 1
Keywords
Links
- Robert Price, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
nmax = 68; s1 = Range[0, nmax/8]*8 + 2; s2 = Range[0, nmax/8]*8 + 3; Table[Count[IntegerPartitions[n, All, s1~Join~s2], x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* Robert Price, Aug 15 2020 *) nmax = 68; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(8 k + 2)), {k, 0, nmax}])*(-1 + 1/Product[(1 - x^(8 k + 3)), {k, 0, nmax}]), {x, 0, nmax}], x] (* Robert Price, Aug 15 2020*)
Formula
G.f.: (-1 + 1/Product_{k>=0} (1 - x^(8 k + 2)))*(-1 + 1/Product_{k>=0} (1 - x^(8 k + 3))). - Robert Price, Aug 15 2020