This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035688 #10 Aug 16 2020 14:08:34 %S A035688 0,0,0,0,0,0,0,1,0,1,0,1,0,2,0,4,0,4,0,5,0,7,0,10,0,12,0,14,0,18,0,24, %T A035688 0,28,0,33,0,41,0,50,0,59,0,70,0,84,0,100,0,117,0,137,0,161,0,188,0, %U A035688 219,0,254,0,295,0,341,0,393,0,453,0,520,0,595,0,682,0,780,0,889,0 %N A035688 Number of partitions of n into parts 8k+2 and 8k+6 with at least one part of each type. %H A035688 Robert Price, <a href="/A035688/b035688.txt">Table of n, a(n) for n = 1..1000</a> %F A035688 G.f.: (-1 + 1/Product_{k>=0} (1 - x^(8 k + 2)))*(-1 + 1/Product_{k>=0} (1 - x^(8 k + 6))). - _Robert Price_, Aug 15 2020 %t A035688 nmax = 79; s1 = Range[0, nmax/8]*8 + 2; s2 = Range[0, nmax/8]*8 + 6; %t A035688 Table[Count[IntegerPartitions[n, All, s1~Join~s2], %t A035688 x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* _Robert Price_, Aug 15 2020 *) %t A035688 nmax = 79; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(8 k + 2)), {k, 0, nmax}])*(-1 + 1/Product[(1 - x^(8 k + 6)), {k, 0, nmax}]), {x, 0, nmax}], x] (* _Robert Price_, Aug 15 2020*) %Y A035688 Cf. A035441-A035468, A035618-A035687, A035689-A035699. %K A035688 nonn %O A035688 1,14 %A A035688 _Olivier Gérard_