This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035690 #12 Aug 16 2020 14:08:42 %S A035690 0,0,0,0,0,0,1,0,0,1,1,0,1,1,3,1,1,3,4,1,3,4,7,3,4,8,10,4,8,11,15,8, %T A035690 11,18,21,11,19,24,30,19,25,37,42,25,40,50,56,41,53,70,79,54,77,95, %U A035690 103,80,103,129,141,106,144,172,183,151,189,228,246,197,257,301,314 %N A035690 Number of partitions of n into parts 8k+3 and 8k+4 with at least one part of each type. %H A035690 Alois P. Heinz, <a href="/A035690/b035690.txt">Table of n, a(n) for n = 1..5000</a> %F A035690 G.f.: (-1 + 1/Product_{k>=0} (1 - x^(8 k + 3)))*(-1 + 1/Product_{k>=0} (1 - x^(8 k + 4))). - _Robert Price_, Aug 15 2020 %t A035690 nmax = 71; s1 = Range[0, nmax/8]*8 + 3; s2 = Range[0, nmax/8]*8 + 4; %t A035690 Table[Count[IntegerPartitions[n, All, s1~Join~s2], %t A035690 x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* _Robert Price_, Aug 15 2020 *) %t A035690 nmax = 71; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(8 k + 3)), {k, 0, nmax}])*(-1 + 1/Product[(1 - x^(8 k + 4)), {k, 0, nmax}]), {x, 0, nmax}], x] (* _Robert Price_, Aug 15 2020*) %Y A035690 Cf. A035441-A035468, A035618-A035689, A035691-A035699. %K A035690 nonn %O A035690 1,15 %A A035690 _Olivier Gérard_