This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035692 #11 Aug 16 2020 14:08:49 %S A035692 0,0,0,0,0,0,0,0,1,0,0,1,0,0,2,0,2,2,0,2,3,0,4,3,3,4,4,4,6,4,8,6,9,9, %T A035692 8,11,13,8,19,14,15,21,18,19,30,19,32,32,29,38,41,36,53,43,56,59,59, %U A035692 67,75,70,93,81,102,105,105,122,133,123,165,145,170,189,183,203,237 %N A035692 Number of partitions of n into parts 8k+3 and 8k+6 with at least one part of each type. %H A035692 Robert Price, <a href="/A035692/b035692.txt">Table of n, a(n) for n = 1..1000</a> %F A035692 G.f.: (-1 + 1/Product_{k>=0} (1 - x^(8 k + 3)))*(-1 + 1/Product_{k>=0} (1 - x^(8 k + 6))). - _Robert Price_, Aug 15 2020 %t A035692 nmax = 75; s1 = Range[0, nmax/8]*8 + 3; s2 = Range[0, nmax/8]*8 + 6; %t A035692 Table[Count[IntegerPartitions[n, All, s1~Join~s2], %t A035692 x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* _Robert Price_, Aug 15 2020 *) %t A035692 nmax = 75; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(8 k + 3)), {k, 0, nmax}])*(-1 + 1/Product[(1 - x^(8 k + 6)), {k, 0, nmax}]), {x, 0, nmax}], x] (* _Robert Price_, Aug 15 2020*) %Y A035692 Cf. A035441-A035468, A035618-A035691, A035693-A035699. %K A035692 nonn %O A035692 1,15 %A A035692 _Olivier Gérard_