This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035695 #14 Aug 16 2020 15:33:46 %S A035695 0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,0,3,0,1,0,4,0,3,0,7,0,4,0,10,0,8,0, %T A035695 15,0,11,0,21,0,18,0,30,0,24,0,42,0,37,0,56,0,50,0,78,0,70,0,102,0,95, %U A035695 0,137,0,129,0,179,0,171,0,236,0,227,0,303,0,297,0,395,0,386,0,502,0 %N A035695 Number of partitions of n into parts 8k+4 and 8k+6 with at least one part of each type. %H A035695 Alois P. Heinz, <a href="/A035695/b035695.txt">Table of n, a(n) for n = 1..10000</a> %F A035695 G.f.: (-1 + 1/Product_{k>=0} (1 - x^(8 k + 4)))*(-1 + 1/Product_{k>=0} (1 - x^(8 k + 6))). - _Robert Price_, Aug 16 2020 %t A035695 nmax = 83; s1 = Range[0, nmax/8]*8 + 4; s2 = Range[0, nmax/8]*8 + 6; %t A035695 Table[Count[IntegerPartitions[n, All, s1~Join~s2], %t A035695 x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* _Robert Price_, Aug 16 2020 *) %t A035695 nmax = 83; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(8 k + 4)), {k, 0, nmax}])*(-1 + 1/Product[(1 - x^(8 k + 6)), {k, 0, nmax}]), {x, 0, nmax}], x] (* _Robert Price_, Aug 16 2020*) %Y A035695 Bisections give A035626 (even part), A000004 (odd part). %Y A035695 Cf. A035441-A035468, A035618-A035694, A035696-A035699. %K A035695 nonn %O A035695 1,18 %A A035695 _Olivier Gérard_