This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035697 #10 Aug 16 2020 15:31:56 %S A035697 0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,2,0,1,1,1,2,2,1,4,1,3,2,3,5,5,3, %T A035697 7,3,7,6,7,9,10,7,13,8,14,12,15,17,19,15,23,17,27,24,28,30,34,30,41, %U A035697 33,48,43,51,53,59,55,70,61,83,76,89,89,100,97,118,108,138,127,149 %N A035697 Number of partitions of n into parts 8k+5 and 8k+6 with at least one part of each type. %H A035697 Robert Price, <a href="/A035697/b035697.txt">Table of n, a(n) for n = 1..1000</a> %F A035697 G.f.: (-1 + 1/Product_{k>=0} (1 - x^(8 k + 5)))*(-1 + 1/Product_{k>=0} (1 - x^(8 k + 6))). - _Robert Price_, Aug 16 2020 %t A035697 nmax = 79; s1 = Range[0, nmax/8]*8 + 5; s2 = Range[0, nmax/8]*8 + 6; %t A035697 Table[Count[IntegerPartitions[n, All, s1~Join~s2], %t A035697 x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* _Robert Price_, Aug 16 2020 *) %t A035697 nmax = 79; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(8 k + 5)), {k, 0, nmax}])*(-1 + 1/Product[(1 - x^(8 k + 6)), {k, 0, nmax}]), {x, 0, nmax}], x] (* _Robert Price_, Aug 16 2020*) %Y A035697 Cf. A035441-A035468, A035618-A035696, A035698-A035699. %K A035697 nonn %O A035697 1,19 %A A035697 _Olivier Gérard_