cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035698 Number of partitions of n into parts 8k+5 and 8k+7 with at least one part of each type.

This page as a plain text file.
%I A035698 #12 Aug 16 2020 15:33:00
%S A035698 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,2,0,1,0,1,2,1,3,3,1,2,1,3,5,3,
%T A035698 6,5,3,5,3,8,9,7,11,8,8,10,9,15,16,15,19,15,16,20,19,28,28,27,33,27,
%U A035698 32,36,36,48,48,49,55,48,57,64,65,82,79,83,92,83,100,106,112,134,129
%N A035698 Number of partitions of n into parts 8k+5 and 8k+7 with at least one part of each type.
%H A035698 Alois P. Heinz, <a href="/A035698/b035698.txt">Table of n, a(n) for n = 1..5000</a>
%F A035698 G.f.: (-1 + 1/Product_{k>=0} (1 - x^(8 k + 5)))*(-1 + 1/Product_{k>=0} (1 - x^(8 k + 7))). - _Robert Price_, Aug 16 2020
%t A035698 nmax = 81; s1 = Range[0, nmax/8]*8 + 5; s2 = Range[0, nmax/8]*8 + 7;
%t A035698 Table[Count[IntegerPartitions[n, All, s1~Join~s2],
%t A035698 x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* _Robert Price_, Aug 16 2020 *)
%t A035698 nmax = 81; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(8 k + 5)), {k, 0, nmax}])*(-1 + 1/Product[(1 - x^(8 k + 7)), {k, 0, nmax}]), {x, 0, nmax}], x]  (* _Robert Price_, Aug 16 2020*)
%Y A035698 Cf. A035441-A035468, A035618-A035697, A035699-A035699.
%K A035698 nonn
%O A035698 1,20
%A A035698 _Olivier Gérard_