A035699 Number of partitions of n into parts 8k+6 and 8k+7 with at least one part of each type.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 2, 0, 0, 0, 1, 1, 3, 2, 3, 0, 1, 1, 3, 3, 6, 4, 5, 1, 3, 3, 7, 7, 11, 7, 8, 3, 7, 8, 15, 13, 19, 12, 13, 8, 16, 17, 27, 24, 30, 20, 23, 18, 32, 32, 46, 40, 48, 34, 41, 37, 56, 57, 76, 66, 76, 58, 71, 67, 97, 96, 122, 105, 119
Offset: 1
Keywords
Links
- Robert Price, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
nmax = 83; s1 = Range[0, nmax/8]*8 + 6; s2 = Range[0, nmax/8]*8 + 7; Table[Count[IntegerPartitions[n, All, s1~Join~s2], x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* Robert Price, Aug 16 2020 *) nmax = 83; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(8 k + 6)), {k, 0, nmax}])*(-1 + 1/Product[(1 - x^(8 k + 7)), {k, 0, nmax}]), {x, 0, nmax}], x] (* Robert Price, Aug 16 2020*)
Formula
G.f.: (-1 + 1/Product_{k>=0} (1 - x^(8 k + 6)))*(-1 + 1/Product_{k>=0} (1 - x^(8 k + 7))). - Robert Price, Aug 16 2020