This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035747 #24 Jun 30 2018 19:44:44 %S A035747 1,200,6800,97880,822560,4780008,21278640,77548920,242080320, %T A035747 668274440,1669752016,3842321560,8251811680,16711687720,32179616240, %U A035747 59307908024,105189061760,180344446280,300011499280,485792684760,767737840032,1186940456040,1798737871920 %N A035747 Coordination sequence for C_10 lattice. %H A035747 Seiichi Manyama, <a href="/A035747/b035747.txt">Table of n, a(n) for n = 0..10000</a> %H A035747 R. Bacher, P. de la Harpe and B. Venkov, <a href="https://doi.org/10.5802/aif.1689">Séries de croissance et séries d'Ehrhart associées aux réseaux de racines</a>, Annales de l'institut Fourier, Tome 49 (1999) no. 3, pp. 727-762. %H A035747 R. Bacher, P. de la Harpe and B. Venkov, <a href="https://doi.org/10.1016/S0764-4442(97)83542-2">Séries de croissance et séries d'Ehrhart associées aux réseaux de racines</a>, C. R. Acad. Sci. Paris, 325 (Series 1) (1997), 1137-1142. %H A035747 J. H. Conway and N. J. A. Sloane, <a href="https://doi.org/10.1098/rspa.1997.0126">Low-Dimensional Lattices VII: Coordination Sequences</a>, Proc. Royal Soc. London, A453 (1997), 2369-2389 (<a href="http://neilsloane.com/doc/Me220.pdf">pdf</a>). %H A035747 Joan Serra-Sagrista, <a href="http://dx.doi.org/10.1016/S0020-0190(00)00119-8">Enumeration of lattice points in l_1 norm</a>, Inf. Proc. Lett. 76 (1-2) (2000) 39-44. %F A035747 a(n) = [x^(2n)] ((1+x)/(1-x))^10. %F A035747 a(n) = A008420(2*n). - _Seiichi Manyama_, Jun 08 2018 %Y A035747 Cf. A008420. %K A035747 nonn,easy %O A035747 0,2 %A A035747 Joan Serra-Sagrista (jserra(AT)ccd.uab.es) %E A035747 Recomputed by _N. J. A. Sloane_, Nov 25 1998