cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035748 Coordination sequence for C_11 lattice.

Original entry on oeis.org

1, 242, 9922, 170610, 1690370, 11414898, 58227906, 240089586, 838478850, 2564399090, 7039035586, 17664712562, 41110086402, 89719625842, 185263467202, 364571790066, 687750033410, 1249849661170, 2197075886786, 3748850875506, 6227320558338, 10096197409650
Offset: 0

Views

Author

Joan Serra-Sagrista (jserra(AT)ccd.uab.es)

Keywords

Programs

  • Maple
    f:= gfun:-rectoproc({(-2*n^2-n)*a(n)+(4*n^2+8*n+246)*a(n+1)+(-2*n^2-7*n-6)*a(n+2), a(0)=1, a(1)=242},a(n),remember):
    seq(f(n), n=0..100);
  • Mathematica
    RecurrenceTable[{(4*n^2 + 8*n + 246)*a[n+1] + (-2*n^2 - 7*n - 6)*a[n+2] + (-2*n^2 - n)*a[n] == 0, a[0] == 1, a[1] == 242}, a, {n, 0, 100}] (* Jean-François Alcover, Sep 16 2022, after Maple program *)

Formula

a(n) = [x^(2n)] ((1+x)/(1-x))^11.
From Robert Israel, Sep 07 2018: (Start)
G.f.: cosh(22*arctanh(sqrt(x))).
(-2*n^2-n)*a(n)+(4*n^2+8*n+246)*a(n+1)+(-2*n^2-7*n-6)*a(n+2)=0. (End)

Extensions

Recomputed by N. J. A. Sloane, Nov 25 1998