cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035877 Number of points of l_1 norm n in the "diamond" lattice D^+_2, i. e. the rectangular lattice generated by vectors (1, 1) and (-1/2, 1/2).

Original entry on oeis.org

1, 2, 12, 6, 24, 10, 36, 14, 48, 18, 60, 22, 72, 26, 84, 30, 96, 34, 108, 38, 120, 42, 132, 46, 144, 50, 156, 54, 168, 58, 180, 62, 192, 66, 204, 70, 216, 74, 228, 78, 240, 82, 252, 86, 264, 90, 276, 94, 288, 98, 300, 102, 312, 106, 324, 110, 336, 114, 348, 118, 360, 122, 372, 126, 384, 130, 396
Offset: 0

Views

Author

Joan Serra-Sagrista (jserra(AT)ccd.uab.es)

Keywords

Crossrefs

Cf. A035878.

Programs

  • Maple
    A035877 := proc(m) local k,t1; t1 := 2*binomial((2+2*m)/2-1,1); if m mod 2 = 0 then t1 := t1+add(2^k*binomial(2,k)*binomial(m-1,k-1),k=0..2); fi; t1; end;
  • Mathematica
    f[m_, n_] := 2^(n - 1)*Binomial[(n + 2*m)/2 - 1, n - 1] + If[EvenQ[m], 2*n*Hypergeometric2F1[1 - m, 1 - n, 2, 2], 0]; f[0, ] = 1; Table[f[m, 2], {m, 0, 40}] (* _Jean-François Alcover, Apr 18 2013, after Maple *)

Formula

a(n)*a(n+3) = -24 + a(n+1)*a(n+2).
G.f.: (1+2x+10x^2+2x^3+x^4)/(1-x^2)^2 and a(2n)=12n for n>0, a(2n+1)=4n+2.

Extensions

Recomputed by N. J. A. Sloane, Nov 27 1998
Name edited by Andrey Zabolotskiy, Aug 29 2022