cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035901 Coordination sequence for diamond structure D^+_50. (Edges defined by l_1 norm = 1.)

Original entry on oeis.org

1, 0, 5000, 0, 4170000, 0, 1394447000, 0, 250799764000, 0, 28222682700200, 0, 2180706863326000, 0, 123252789641763000, 0, 5335428332027176000, 0, 183203070393610797000, 0, 5129723834328569406800, 0, 119780004243882975543000, 0, 2376073555319729124284000, 562949953421312, 40672867115498596760897000
Offset: 0

Views

Author

Joan Serra-Sagrista (jserra(AT)ccd.uab.es)

Keywords

Comments

Differs from A035787 first at a(13). - R. J. Mathar, Mar 06 2010

Programs

  • Maple
    f := proc(m) local k,t1; t1 := 2^(n-1)*binomial((n+2*m)/2-1,n-1); if m mod 2 = 0 then t1 := t1+add(2^k*binomial(n,k)*binomial(m-1,k-1),k=0..n); fi; t1; end; where n=50.
  • Mathematica
    n = 50;
    f[m_] := Module[{k, t1}, t1 = 2^(n-1) Binomial[(n+2m)/2 - 1, n-1]; If[ EvenQ[m], t1 = t1 + Sum[2^k Binomial[n, k] Binomial[m-1, k-1], {k, 0, n}]]; t1];
    f /@ Range[0, 22, 2] (* Jean-François Alcover, Apr 07 2020, from Maple *)

Extensions

Recomputed by N. J. A. Sloane, Nov 27 1998
Zeroes inserted by Georg Fischer, Jul 26 2020