This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035926 #17 Jul 26 2020 09:12:37 %S A035926 1,0,20000,0,66680000,0,88977788000,0,63669939056000,0, %T A035926 28388261970800800,0,8645481416595304000,0,1913769409906455052000,0, %U A035926 322081772124335598304000,0,42639787126552298702388000,0,4560880160205473732557707200,0,402747462617285816887874972000,0,29887395794995795375534035536000,0 %N A035926 Coordination sequence for diamond structure D^+_100. (Edges defined by l_1 norm = 1.) %H A035926 Georg Fischer, <a href="/A035926/b035926.txt">Table of n, a(n) for n = 0..200</a> %H A035926 J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (<a href="http://neilsloane.com/doc/Me220.pdf">pdf</a>). %H A035926 Joan Serra-Sagrista, <a href="http://dx.doi.org/10.1016/S0020-0190(00)00119-8">Enumeration of lattice points in l_1 norm</a>, Inf. Proc. Lett. 76 (1-2) (2000) 39-44. %p A035926 f := proc(m) local k,t1; t1 := 2^(n-1)*binomial((n+2*m)/2-1,n-1); if m mod 2 = 0 then t1 := t1+add(2^k*binomial(n,k)*binomial(m-1,k-1),k=0..n); fi; t1; end; where n=100. %K A035926 nonn %O A035926 0,3 %A A035926 Joan Serra-Sagrista (jserra(AT)ccd.uab.es) %E A035926 Recomputed by _N. J. A. Sloane_, Nov 27 1998 %E A035926 Zeroes inserted by _Georg Fischer_, Jul 26 2020