This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035941 #17 Jan 12 2019 20:15:05 %S A035941 1,1,2,3,4,6,7,10,13,17,21,28,35,44,55,69,84,105,127,156,189,229,275, %T A035941 333,397,475,565,673,795,943,1109,1307,1533,1798,2099,2455,2855,3323, %U A035941 3855,4472,5169,5978,6890,7942,9132,10495,12032,13796,15778,18040 %N A035941 Number of partitions of n into parts not of the form 9k, 9k+2 or 9k-2. Also number of partitions with 1 part of size 1 and differences between parts at distance 3 are greater than 1. %C A035941 Case k=4, i=2 of Gordon Theorem. %D A035941 G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109. %F A035941 a(n) ~ sin(2*Pi/9) * exp(2*Pi*sqrt(n)/3) / (3*sqrt(3)*n^(3/4)). - _Vaclav Kotesovec_, Nov 12 2015 %p A035941 # See A035937 for GordonsTheorem %p A035941 A035941_list := n -> GordonsTheorem([1, 0, 1, 1, 1, 1, 0, 1, 0], n): %p A035941 A035941_list(40); # _Peter Luschny_, Jan 22 2012 %t A035941 nmax = 60; Rest[CoefficientList[Series[Product[1 / ((1 - x^(9*k-1)) * (1 - x^(9*k-3)) * (1 - x^(9*k-4)) * (1 - x^(9*k-5)) * (1 - x^(9*k-6)) * (1 - x^(9*k-8)) ), {k, 1, nmax}], {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, Nov 12 2015 *) %o A035941 (Sage) # See A035937 for GordonsTheorem %o A035941 def A035941_list(len) : return GordonsTheorem([1, 0, 1, 1, 1, 1, 0, 1, 0], len) %o A035941 A035941_list(40) # _Peter Luschny_, Jan 22 2012 %K A035941 nonn,easy %O A035941 1,3 %A A035941 _Olivier Gérard_