A035949 Number of partitions in parts not of the form 13k, 13k+1 or 13k-1. Also number of partitions with no part of size 1 and differences between parts at distance 5 are greater than 1.
0, 1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 20, 23, 32, 39, 51, 61, 80, 95, 122, 146, 183, 219, 273, 324, 399, 475, 578, 685, 830, 979, 1177, 1387, 1655, 1945, 2311, 2705, 3198, 3737, 4396, 5121, 6003, 6973, 8143, 9439, 10981, 12697, 14730, 16987, 19648, 22614
Offset: 1
References
- G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109.
Programs
-
Mathematica
nmax = 60; Rest[CoefficientList[Series[Product[1 / ((1 - x^(13*k-2)) * (1 - x^(13*k-3)) * (1 - x^(13*k-4)) * (1 - x^(13*k-5)) * (1 - x^(13*k-6)) * (1 - x^(13*k-7)) * (1 - x^(13*k-8)) * (1 - x^(13*k-9)) * (1 - x^(13*k-10)) * (1 - x^(13*k-11)) ), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Nov 22 2015 *)
Formula
a(n) ~ sin(Pi/13) * 5^(1/4) * exp(2*Pi*sqrt(5*n/39)) / (3^(1/4) * 13^(3/4) * n^(3/4)). - Vaclav Kotesovec, Nov 22 2015
Comments