This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035951 #8 Nov 22 2015 12:35:10 %S A035951 1,2,2,4,5,8,10,15,19,26,33,45,56,74,92,119,147,187,230,289,353,438, %T A035951 532,655,791,965,1160,1405,1681,2023,2409,2883,3420,4070,4809,5698, %U A035951 6707,7911,9281,10904,12750,14925,17397,20296,23590,27431,31795,36864 %N A035951 Number of partitions in parts not of the form 13k, 13k+3 or 13k-3. Also number of partitions with at most 2 parts of size 1 and differences between parts at distance 5 are greater than 1. %C A035951 Case k=6,i=3 of Gordon Theorem. %D A035951 G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109. %F A035951 a(n) ~ sin(3*Pi/13) * 5^(1/4) * exp(2*Pi*sqrt(5*n/39)) / (3^(1/4) * 13^(3/4) * n^(3/4)). - _Vaclav Kotesovec_, Nov 22 2015 %t A035951 nmax = 60; Rest[CoefficientList[Series[Product[1 / ((1 - x^(13*k-1)) * (1 - x^(13*k-2)) * (1 - x^(13*k-4)) * (1 - x^(13*k-5)) * (1 - x^(13*k-6)) * (1 - x^(13*k-7)) * (1 - x^(13*k-8)) * (1 - x^(13*k-9)) * (1 - x^(13*k-11)) * (1 - x^(13*k-12)) ), {k, 1, nmax}], {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, Nov 22 2015 *) %K A035951 nonn,easy %O A035951 1,2 %A A035951 _Olivier Gérard_