This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035969 #13 May 10 2018 03:09:32 %S A035969 1,1,2,3,5,7,11,15,21,28,39,51,69,89,117,150,194,245,313,392,494,614, %T A035969 766,944,1168,1430,1754,2135,2601,3146,3810,4585,5519,6611,7917,9440, %U A035969 11253,13361,15856,18755,22169,26124,30766,36132,42401,49639,58063 %N A035969 Number of partitions of n into parts not of the form 17k, 17k+8 or 17k-8. Also number of partitions with at most 7 parts of size 1 and differences between parts at distance 7 are greater than 1. %C A035969 Case k=8,i=8 of Gordon Theorem. %D A035969 G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109. %H A035969 Seiichi Manyama, <a href="/A035969/b035969.txt">Table of n, a(n) for n = 0..1000</a> %F A035969 a(n) ~ exp(2*Pi*sqrt(7*n/51)) * 7^(1/4) * cos(Pi/34) / (3^(1/4) * 17^(3/4) * n^(3/4)). - _Vaclav Kotesovec_, May 10 2018 %t A035969 nmax = 60; CoefficientList[Series[Product[(1 - x^(17*k))*(1 - x^(17*k+ 8-17))*(1 - x^(17*k- 8))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, May 10 2018 *) %K A035969 nonn,easy %O A035969 0,3 %A A035969 _Olivier Gérard_ %E A035969 a(0)=1 prepended by _Seiichi Manyama_, May 08 2018