A036037 Triangle read by rows in which row n lists all the parts of all the partitions of n, sorted first by length and then colexicographically.
1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 3, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 5, 4, 1, 3, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 3, 3, 4, 1, 1, 3, 2, 1, 2, 2, 2, 3, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 6, 1, 5, 2, 4, 3, 5, 1, 1, 4, 2, 1, 3, 3, 1, 3, 2, 2, 4, 1, 1
Offset: 1
Examples
First five rows are: {{1}} {{2}, {1, 1}} {{3}, {2, 1}, {1, 1, 1}} {{4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}} {{5}, {4, 1}, {3, 2}, {3, 1, 1}, {2, 2, 1}, {2, 1, 1, 1}, {1, 1, 1, 1, 1}} Up to the fifth row, this is exactly the same as the reverse lexicographic ordering A080577. The first row which differs is the sixth one, which reads ((6), (5,1), (4,2), (3,3), (4,1,1), (3,2,1), (2,2,2), (3,1,1,1), (2,2,1,1), (2,1,1,1,1), (1,1,1,1,1,1)). - _M. F. Hasler_, Jan 23 2020 From _Gus Wiseman_, May 08 2020: (Start) The sequence of all partitions begins: () (3,2) (2,1,1,1,1) (1) (3,1,1) (1,1,1,1,1,1) (2) (2,2,1) (7) (1,1) (2,1,1,1) (6,1) (3) (1,1,1,1,1) (5,2) (2,1) (6) (4,3) (1,1,1) (5,1) (5,1,1) (4) (4,2) (4,2,1) (3,1) (3,3) (3,3,1) (2,2) (4,1,1) (3,2,2) (2,1,1) (3,2,1) (4,1,1,1) (1,1,1,1) (2,2,2) (3,2,1,1) (5) (3,1,1,1) (2,2,2,1) (4,1) (2,2,1,1) (3,1,1,1,1) (End)
Links
- Robert Price, Table of n, a(n) for n = 1..3615, 15 rows.
- Wikiversity, Lexicographic and colexicographic order
Crossrefs
See A036036 for the graded reflected colexicographic ("Abramowitz and Stegun" or Hindenburg) ordering.
See A080576 for the graded reflected lexicographic ("Maple") ordering.
See A080577 for the graded reverse lexicographic ("Mathematica") ordering: differs from a(48) on!
See A228100 for the Fenner-Loizou (binary tree) ordering.
Partition lengths are A036043.
Reversing all partitions gives A036036.
The number of distinct parts is A103921.
Taking Heinz numbers gives A185974.
The version ignoring length is A211992.
The version for revlex instead of colex is A334439.
Lexicographically ordered reversed partitions are A026791.
Reverse-lexicographically ordered partitions are A080577.
Sorting partitions by Heinz number gives A296150.
Programs
-
Mathematica
Reverse/@Join@@Table[Sort[Reverse/@IntegerPartitions[n]],{n,8}] (* Gus Wiseman, May 08 2020 *) - or - colen[f_,c_]:=OrderedQ[{Reverse[f],Reverse[c]}]; Join@@Table[Sort[IntegerPartitions[n],colen],{n,8}] (* Gus Wiseman, May 08 2020 *)
Extensions
Name corrected by Gus Wiseman, May 12 2020
Mathematica programs corrected to reflect offset of one and not zero by Robert Price, Jun 04 2020
Comments