cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036069 Denominator of rational part of Haar measure on Grassmannian space G(n,1).

This page as a plain text file.
%I A036069 #16 Sep 23 2022 16:38:13
%S A036069 1,2,1,4,3,16,5,32,35,256,63,512,231,2048,429,4096,6435,65536,12155,
%T A036069 131072,46189,524288,88179,1048576,676039,8388608,1300075,16777216,
%U A036069 5014575,67108864,9694845,134217728,300540195
%N A036069 Denominator of rational part of Haar measure on Grassmannian space G(n,1).
%C A036069 Also rational part of denominator of Gamma(n/2+1)/Gamma(n/2+1/2) (cf. A004731).
%D A036069 D. A. Klain and G.-C. Rota, Introduction to Geometric Probability, Cambridge, p. 67.
%H A036069 G. C. Greubel, <a href="/A036069/b036069.txt">Table of n, a(n) for n = 0..1000</a>
%e A036069 1, 1, 1/2*Pi, 2, 3/4*Pi, 8/3, 15/16*Pi, 16/5, 35/32*Pi, 128/35, 315/256*Pi, ...
%e A036069 The sequence Gamma(n/2+1)/Gamma(n/2+1/2), n >= 0, begins 1/Pi^(1/2), (1/2)*Pi^(1/2), 2/Pi^(1/2), (3/4)*Pi^(1/2), (8/3)/Pi^(1/2), (15/16)*Pi^(1/2), (16/5)/Pi^(1/2), ...
%p A036069 if n mod 2 = 0 then k := n/2; 2*k*Pi*binomial(2*k-1,k)/4^k else k := (n-1)/2; 4^k/binomial(2*k,k); fi;
%p A036069 f:=n->simplify(GAMMA(n/2+1)/GAMMA(n/2+1/2));
%t A036069 Table[ Denominator[ Gamma[n/2+1]/Gamma[n/2+1/2]*Sqrt[Pi]^(1 - 2 Mod[n, 2])], {n, 0, 32}] (* _Jean-François Alcover_, Jul 16 2012 *)
%Y A036069 Cf. A004731.
%Y A036069 Bisections are A001790 and A101926.
%Y A036069 Cf. A004731, A046161, A001790, A001803, A101926.
%K A036069 nonn,easy,nice,frac
%O A036069 0,2
%A A036069 _N. J. A. Sloane_