cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036129 a(n) = 2^n mod 59.

This page as a plain text file.
%I A036129 #25 Sep 08 2022 08:44:52
%S A036129 1,2,4,8,16,32,5,10,20,40,21,42,25,50,41,23,46,33,7,14,28,56,53,47,35,
%T A036129 11,22,44,29,58,57,55,51,43,27,54,49,39,19,38,17,34,9,18,36,13,26,52,
%U A036129 45,31,3,6,12,24,48,37,15
%N A036129 a(n) = 2^n mod 59.
%D A036129 I. M. Vinogradov, Elements of Number Theory, pp. 220 ff.
%H A036129 G. C. Greubel, <a href="/A036129/b036129.txt">Table of n, a(n) for n = 0..10000</a>
%H A036129 <a href="/index/Rec#order_30">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1).
%F A036129 a(n) = a(n+58). - _R. J. Mathar_, Jun 04 2016
%F A036129 a(n) = a(n-1) - a(n-29) + a(n-30). - _G. C. Greubel_, Oct 17 2018
%p A036129 i := pi(59) ; [ seq(primroot(ithprime(i))^j mod ithprime(i),j=0..100) ];
%t A036129 PowerMod[2, Range[0, 100], 59] (* _G. C. Greubel_, Oct 17 2018 *)
%o A036129 (PARI) a(n)=lift(Mod(2,59)^n) \\ _Charles R Greathouse IV_, Mar 22 2016
%o A036129 (Magma) [Modexp(2, n, 59): n in [0..100]]; // _G. C. Greubel_, Oct 17 2018
%o A036129 (GAP) List([0..70],n->PowerMod(2,n,59)); # _Muniru A Asiru_, Jan 30 2019
%K A036129 nonn,easy
%O A036129 0,2
%A A036129 _N. J. A. Sloane_