This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A036135 #32 Sep 08 2022 08:44:52 %S A036135 1,2,4,8,16,32,64,45,7,14,28,56,29,58,33,66,49,15,30,60,37,74,65,47, %T A036135 11,22,44,5,10,20,40,80,77,71,59,35,70,57,31,62,41,82,81,79,75,67,51, %U A036135 19,38,76,69,55,27,54,25,50,17 %N A036135 a(n) = 2^n mod 83. %D A036135 I. M. Vinogradov, Elements of Number Theory, pp. 220 ff. %H A036135 G. C. Greubel, <a href="/A036135/b036135.txt">Table of n, a(n) for n = 0..10000</a> %H A036135 <a href="/index/Rec#order_42">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1). %F A036135 From _G. C. Greubel_, Oct 17 2018: (Start) %F A036135 a(n) = a(n-1) - a(n-41) + a(n-42). %F A036135 a(n+82) = a(n). (End) %p A036135 [ seq(primroot(ithprime(i))^j mod ithprime(i),j=0..100) ]; %t A036135 PowerMod[2, Range[0, 100], 83] (* _G. C. Greubel_, Oct 17 2018 *) %o A036135 (PARI) a(n)=lift(Mod(2,83)^n) \\ _Charles R Greathouse IV_, Mar 22 2016 %o A036135 (Python) for n in range(0, 100): print(int(pow(2, n, 83)), end=' ') # _Stefano Spezia_, Oct 17 2018 %o A036135 (GAP) List([0..60],n->PowerMod(2,n,83)); # _Muniru A Asiru_, Oct 17 2018 %o A036135 (Magma) [Modexp(2, n, 83): n in [0..100]]; // _G. C. Greubel_, Oct 18 2018 %Y A036135 CF. A000079 (2^n). %K A036135 nonn,easy %O A036135 0,2 %A A036135 _N. J. A. Sloane_