This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A036242 #22 Aug 18 2024 20:42:13 %S A036242 1,4,25,204,2065,24984,351841,5654440,102131761,2048289660, %T A036242 45164504281,1085996392404,28281070706785,792955976182384, %U A036242 23816960356178305,762935687373888144,25963630331068375201,935453627605835395380,35573201479352813399641,1423863512801718371381020 %N A036242 Numerator of fraction equal to the continued fraction [0,2,4,...2n]. %F A036242 Recurrence equation: a(n+1) = (2*n+2)*a(n) + a(n-1) with a(0) = 1 and a(1) = 1. %F A036242 a(n) = Sum_{k = 0..floor((n-1)/2)} 2^(n-2*k-1)*(n-2*k-1)!*binomial(n-k-1,k)*binomial(n-k,k+1). Cf. A058798. - _Peter Bala_, Aug 01 2013 %F A036242 a(n) = 2^(n-1)*n!*hypergeometric([(1-n)/2, 1-n/2],[2, 1-n, -n], 1) for n>=2. - _Peter Luschny_, Sep 14 2014 %t A036242 a[n_] := FromContinuedFraction[Range[0, 2n, 2]] // Numerator; Array[a,20] (* _Jean-François Alcover_, Jun 03 2019 *) %o A036242 (Sage) %o A036242 def A036242(n): %o A036242 if n == 1: return 1 %o A036242 return 2^(n-1)*factorial(n)*hypergeometric([1/2 - n/2, 1 - n/2], [2, 1-n, -n], 1) %o A036242 [round(A036242(n).n(100)) for n in (1..20)] # _Peter Luschny_, Sep 14 2014 %Y A036242 Cf. A036243 (denominator), A058798. %K A036242 frac,nonn,easy %O A036242 1,2 %A A036242 _Jeff Burch_