cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036259 Numbers k such that the multiplicative order of 2 modulo k is odd.

Original entry on oeis.org

1, 7, 23, 31, 47, 49, 71, 73, 79, 89, 103, 127, 151, 161, 167, 191, 199, 217, 223, 233, 239, 263, 271, 311, 329, 337, 343, 359, 367, 383, 431, 439, 463, 479, 487, 497, 503, 511, 529, 553, 599, 601, 607, 623, 631, 647, 713, 719, 721, 727, 743, 751
Offset: 1

Views

Author

Keywords

Comments

Odd numbers k such that A007733(k) = A002326((k-1)/2) is odd.
Closed under multiplication. - Emmanuel Vantieghem, May 07 2025

Examples

			2^3 = 1 mod 7, 3 is odd, so 7 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 999, 2], OddQ[MultiplicativeOrder[2, #]]&] (* Jean-François Alcover, Dec 20 2017 *)
  • PARI
    is(n)=n%2 && znorder(Mod(2,n))%2 \\ Charles R Greathouse IV, Jun 24 2015
    
  • Python
    from sympy import n_order
    from itertools import count, islice
    def A036259_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:n_order(2,n)&1,count(max(startvalue,1)|1,2))
    A036259_list = list(islice(A036259_gen(),20)) # Chai Wah Wu, Feb 07 2023