A036259 Numbers k such that the multiplicative order of 2 modulo k is odd.
1, 7, 23, 31, 47, 49, 71, 73, 79, 89, 103, 127, 151, 161, 167, 191, 199, 217, 223, 233, 239, 263, 271, 311, 329, 337, 343, 359, 367, 383, 431, 439, 463, 479, 487, 497, 503, 511, 529, 553, 599, 601, 607, 623, 631, 647, 713, 719, 721, 727, 743, 751
Offset: 1
Keywords
Examples
2^3 = 1 mod 7, 3 is odd, so 7 is in the sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[1, 999, 2], OddQ[MultiplicativeOrder[2, #]]&] (* Jean-François Alcover, Dec 20 2017 *)
-
PARI
is(n)=n%2 && znorder(Mod(2,n))%2 \\ Charles R Greathouse IV, Jun 24 2015
-
Python
from sympy import n_order from itertools import count, islice def A036259_gen(startvalue=1): # generator of terms >= startvalue return filter(lambda n:n_order(2,n)&1,count(max(startvalue,1)|1,2)) A036259_list = list(islice(A036259_gen(),20)) # Chai Wah Wu, Feb 07 2023
Comments