cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036288 a(n) = 1 + integer log of n: if the prime factorization of n is n = Product (p_j^k_j) then a(n) = 1 + Sum (p_j * k_j) (cf. A001414).

This page as a plain text file.
%I A036288 #35 Jan 15 2022 23:31:52
%S A036288 1,3,4,5,6,6,8,7,7,8,12,8,14,10,9,9,18,9,20,10,11,14,24,10,11,16,10,
%T A036288 12,30,11,32,11,15,20,13,11,38,22,17,12,42,13,44,16,12,26,48,12,15,13,
%U A036288 21,18,54,12,17,14,23,32,60,13,62,34,14,13,19,17,68,22
%N A036288 a(n) = 1 + integer log of n: if the prime factorization of n is n = Product (p_j^k_j) then a(n) = 1 + Sum (p_j * k_j) (cf. A001414).
%C A036288 If this function is iterated then, starting at any number n >= 7, we will always reach an 8 - see A212813, A212814, A212815. - _N. J. A. Sloane_, May 30 2012
%C A036288 a(n) = 1 + Sum_{k=1..A001221(n)} A027748(k) * A124010(k). - _Reinhard Zumkeller_, May 30 2012
%D A036288 Bellamy, O. S.; Cadogan, C. C. Subsets of positive integers: their cardinality and maximality properties. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 167--178, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561043 (82b:10006) - From _N. J. A. Sloane_, May 30 2012
%D A036288 R. Honsberger, Problem 89, Another Curious Sequence, Mathematical Morsels, MAA, 1978, pp. 223-227.
%H A036288 Reinhard Zumkeller, <a href="/A036288/b036288.txt">Table of n, a(n) for n = 1..10000</a>
%H A036288 J. B. Roberts, <a href="http://www.jstor.org/stable/2317575">Problem E2356</a>, Amer. Math. Monthly, 79 (1972); <a href="http://www.jstor.org/stable/2318177">solution</a> by H. Kappus, loc. cit., 80 (1973), p. 810.
%e A036288 12 = 2^2 * 3 so a(12) = 1 + 2^2 + 3 = 8.
%p A036288 f:=proc(n) local i,t1; t1:=ifactors(n)[2]; 1+add( t1[i][1]*t1[i][2], i=1..nops(t1)); end; # _N. J. A. Sloane_, May 30 2012
%t A036288 f[1]=1;f[n_]:=Total[Apply[Times,FactorInteger[n],1]]+1;f/@Range@68 (* _Ivan N. Ianakiev_, Apr 18 2016 *)
%o A036288 (Haskell)
%o A036288 a036288 n = 1 + sum (zipWith (*)
%o A036288             (a027748_row n) (map fromIntegral $ a124010_row n))
%o A036288 -- _Reinhard Zumkeller_, May 30 2012
%o A036288 (PARI) A036288(n)=1+(n=factor(n))[,1]~*n[,2]  \\ _M. F. Hasler_, May 30 2012
%Y A036288 Equals A001414 + 1.
%Y A036288 Cf. A212813, A212814, A212815, A212816, A212908, A212909.
%K A036288 nonn
%O A036288 1,2
%A A036288 _N. J. A. Sloane_
%E A036288 Edited by _N. J. A. Sloane_, Jun 01 2012