This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A036301 #38 Aug 12 2023 01:05:58 %S A036301 0,112,121,134,143,156,165,178,187,211,314,336,341,358,363,385,413, %T A036301 431,516,538,561,583,615,633,651,718,781,817,835,853,871,1012,1021, %U A036301 1034,1043,1056,1065,1078,1087,1102,1120,1201,1210,1223,1232,1245,1254,1267,1276,1289,1298 %N A036301 Numbers whose sum of even digits and sum of odd digits are equal. %H A036301 John Cerkan, <a href="/A036301/b036301.txt">Table of n, a(n) for n = 1..10000</a> %F A036301 This set A036301 = { n | A071650(n) = 0 }. - _M. F. Hasler_, Aug 11 2023 %t A036301 Select[Range[0,10000], Plus @@Select[IntegerDigits[ # ], OddQ]\[Equal]Plus @@Select[IntegerDigits[ # ], EvenQ]&] (* _Zak Seidov_, Feb 17 2005 *) %o A036301 (Magma) [ n: n in [0..1300] | (#A eq 0 select 0 else &+A) eq (#B eq 0 select 0 else &+B) where A is [ d: d in D | IsOdd(d) ] where B is [ d: d in D | IsEven(d) ] where D is Intseq(n) ]; %o A036301 (PARI) select( is_A036301(n)=!vecsum(apply(t->(-1)^t*t,digits(n))), [0..1999]) \\ This defines the function is_A036301 = !A071650; the surrounding select(...) just serves as a check and illustration. - _M. F. Hasler_, Dec 09 2018 %o A036301 A36301=[112]; A036301(n, L=#A36301)={while(n>L, A36301=concat(A36301, next_A036301(A36301[L], L, L+=1))); A36301[n]} \\ _M. F. Hasler_, Aug 11 2023 %o A036301 next_A036301(N, L=#A36301, k=setsearch(A36301, N+1, 1)) = if(k>L, until( is_A036301(N+=1),); N, k, A36301[k], N+1) \\ next larger term: min { a(k) > N }. - _M. F. Hasler_, Aug 11 2023 %o A036301 (Python) %o A036301 def eodiff(n): %o A036301 digs = list(map(int, str(n))) %o A036301 return abs(sum(d for d in digs if d%2==0)-sum(d for d in digs if d%2==1)) %o A036301 def aupto(lim): return [m for m in range(lim+1) if eodiff(m) == 0] %o A036301 print(aupto(1298)) # _Michael S. Branicky_, Feb 21 2021 %Y A036301 Cf. A071650 (sum of odd digits minus sum of even digits). %K A036301 nonn,base %O A036301 1,2 %A A036301 _Patrick De Geest_, Dec 15 1998 %E A036301 Zero added by _Zak Seidov_, Nov 22 2010 %E A036301 Name edited by _Michel Marcus_, Jan 14 2021