This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A036312 #28 May 18 2022 07:57:03 %S A036312 4,8,14,16,28,32,49,56,64,98,112,128,196,224,256,343,392,448,454,512, %T A036312 554,686,784,896,908,1024,1108,1372,1454,1568,1589,1792,1816,1939, %U A036312 2048,2216,2401,2744,2908,3136,3178,3584,3632,3878,4096,4432,4802,5089,5488 %N A036312 Composite numbers whose prime factors contain no digits other than 2 and 7. %C A036312 All terms are a product of at least two terms of A020459. - _David A. Corneth_, Oct 09 2020 %H A036312 David A. Corneth, <a href="/A036312/b036312.txt">Table of n, a(n) for n = 1..10000</a> (first 5340 terms from Robert Israel) %H A036312 <a href="/index/Pri#prime_factors">Index entries for sequences related to prime factors</a>. %F A036312 Sum_{n>=1} 1/a(n) = Product_{p in A020459} (p/(p - 1)) - Sum_{p in A020459} 1/p - 1 = 0.7041098484... . - _Amiram Eldar_, May 18 2022 %p A036312 dmax:= 4: # for terms < 2*10^dmax %p A036312 P:= {2,7}: %p A036312 L:= {7}: %p A036312 for d from 1 to dmax-1 do %p A036312 L:= map(t -> 2*10^d+t, L) union map(t -> 7*10^d+t, L); %p A036312 P:= P union select(isprime,L); %p A036312 od: %p A036312 R:= {1}: N:= 2*10^dmax: %p A036312 for p in P do %p A036312 R:= R union map(t -> seq(t*p^j,j=1..floor(log[p](N/t))), R) %p A036312 od: %p A036312 sort(convert(R minus P minus {1},list)); # _Robert Israel_, Aug 04 2020 %Y A036312 Cf. A003591, A020459, A036302-A036325. %K A036312 nonn,easy,base %O A036312 1,1 %A A036312 _Patrick De Geest_, Dec 15 1998