cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036319 Composite numbers whose prime factors have no digits other than 4's and 9's.

This page as a plain text file.
%I A036319 #35 May 22 2022 05:50:41
%S A036319 201601,224051,249001,2244551,2494501,4467101,4964551,19957601,
%T A036319 22180051,22225051,22449551,24700001,24949501,24990001,42632101,
%U A036319 42654551,47379551,47404501,49735051,90518849,98982601,100598899,111801449,124251499,199557601,221780051,222200551,247445501
%N A036319 Composite numbers whose prime factors have no digits other than 4's and 9's.
%C A036319 Closed under multiplication. - _David A. Corneth_, Sep 21 2020
%C A036319 From _M. F. Hasler_, Sep 22 2020: (Start)
%C A036319 Also closed under LCM, but not under GCD.
%C A036319 All terms are congruent to 1 or 9 (mod 10), depending on the parity of their number of prime factors counted with multiplicity, A001222. (End)
%H A036319 David A. Corneth, <a href="/A036319/b036319.txt">Table of n, a(n) for n = 1..10000</a>
%H A036319 <a href="/index/Pri#prime_factors">Index entries for sequences related to prime factors</a>.
%F A036319 Sum_{n>=1} 1/a(n) = Product_{p in A020466} (p/(p - 1)) - Sum_{p in A020466} 1/p - 1 = 0.00001523788893... . - _Amiram Eldar_, May 22 2022
%e A036319 The smallest prime made up of 4's and 9's is 449 (see A020466), so the smallest term here is 449^2 = 201601. - _N. J. A. Sloane_, Sep 21 2020
%t A036319 cn49Q[n_]:=Module[{fi=FactorInteger[n][[All,1]]},CompositeQ[n]&&Union[ Flatten[ IntegerDigits/@fi]]=={4,9}&&AllTrue[fi,PrimeQ]]; Select[Range[ 1,1006*10^5,2],cn49Q] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Sep 21 2020 *)
%o A036319 (PARI) is(N)={!isprime(N)&& !#setminus(Set(concat(apply (digits, factor(N)[,1]))), [4,9])} \\ _M. F. Hasler_, Sep 22 2020
%Y A036319 Cf. A001222, A020466, A036302-A036325.
%K A036319 nonn,easy,base
%O A036319 1,1
%A A036319 _Patrick De Geest_, Dec 15 1998
%E A036319 More terms from _David A. Corneth_, Sep 21 2020