This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A036342 #35 Feb 16 2025 08:32:37 %S A036342 2,3,5,7,11,23,67,89,4567,23456789,23456789101112123, %T A036342 891011121234567891011,23456789101112123456789101112123, %U A036342 567891011121234567891011121234567891011,121234567891011121234567891011121234567891011121,91011121234567891011121234567891011121234567891011121234567 %N A036342 Prime concatenated analog clock numbers read clockwise. %C A036342 The hours 10, 11 and 12 are taken 'complete and unreversed'. %C A036342 a(28) has 1325 digits. - _Michael S. Branicky_, May 20 2024 %H A036342 Michael S. Branicky, <a href="/A036342/b036342.txt">Table of n, a(n) for n = 1..27</a> (terms 1..25 from Sean A. Irvine) %H A036342 Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_019.htm">Puzzle 19. Primes on a clock</a>, The Prime Puzzles & Problems Connection. %H A036342 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ClockPrime.html">Clock Prime</a>. %o A036342 (Python) %o A036342 import heapq %o A036342 from sympy import isprime %o A036342 from itertools import islice %o A036342 def A036342_gen(): # generator of terms %o A036342 h = [(i, i) for i in range(1, 13)] %o A036342 while True: %o A036342 v, last = heapq.heappop(h) %o A036342 if isprime(v): %o A036342 yield v %o A036342 nxt = 1 if last == 12 else last+1 %o A036342 shift = 10 if nxt < 10 else 100 %o A036342 heapq.heappush(h, (v*shift+nxt, nxt)) %o A036342 print(list(islice(A036342_gen(), 16))) # _Michael S. Branicky_, May 20 2024 %Y A036342 Cf. A034326, A036343, A036344. %K A036342 nonn,base %O A036342 1,1 %A A036342 _Patrick De Geest_, Dec 15 1998 %E A036342 a(14)-a(15) from _Jean-Marie Hachey_, Oct 05 2016 %E A036342 Offset and data corrected by _Sean A. Irvine_, Oct 26 2020