cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036349 Numbers whose sum of prime factors (taken with multiplicity) is even.

This page as a plain text file.
%I A036349 #43 Nov 02 2020 20:38:15
%S A036349 1,2,4,8,9,15,16,18,21,25,30,32,33,35,36,39,42,49,50,51,55,57,60,64,
%T A036349 65,66,69,70,72,77,78,81,84,85,87,91,93,95,98,100,102,110,111,114,115,
%U A036349 119,120,121,123,128,129,130,132,133,135,138,140,141,143,144,145,154,155
%N A036349 Numbers whose sum of prime factors (taken with multiplicity) is even.
%C A036349 A multiplicative semigroup; if m and n are in the sequence then so is m*n. - _David James Sycamore_, Jul 17 2018
%C A036349 From _Peter Munn_, Jul 19 2020: (Start)
%C A036349 Also closed under the commutative binary operation A059897(.,.), forming a subgroup of the positive integers under A059897.
%C A036349 A number is listed if and only if it has an even number of odd prime factors, counting repetitions; equivalently, if and only if it is the product of a term of A046337 and a power of 2 (term of A000079).
%C A036349 (End)
%H A036349 Robert Israel, <a href="/A036349/b036349.txt">Table of n, a(n) for n = 1..10000</a>
%F A036349 Sum_{n>=1} 1/a(n)^s = (zeta(s) + ((2^s + 1)/(2^s - 1))*zeta(2*s)/zeta(s))/2 for Re(s)>1. - _Amiram Eldar_, Nov 02 2020
%e A036349 141 = 3 * 47 is a term since the sum 3 + 47 = 50 is even.
%p A036349 filter:= proc(n) local t; add(t[1]*t[2],t=ifactors(n)[2])::even end proc:
%p A036349 select(filter, [$1..200]); # _Robert Israel_, Jul 15 2020
%t A036349 Select[Range[160],EvenQ[Total[Times@@@FactorInteger[#]]]&] (* _Harvey P. Dale_, Sep 21 2011 *)
%o A036349 (PARI) isok(n) = my(f=factor(n)); (sum(k=1, #f~, f[k,1]*f[k,2]) % 2) == 0; \\ _Michel Marcus_, Jul 19 2018
%Y A036349 Cf. A001414 (sopfr), A059897.
%Y A036349 Complement of A335657.
%Y A036349 Sequences with similar definitions: A036350, A046363, A289142.
%Y A036349 Subsequences: A000079, A028982, A046337, A056913.
%K A036349 nonn
%O A036349 1,2
%A A036349 _Patrick De Geest_, Dec 15 1998
%E A036349 First term (2) from _Harvey P. Dale_, Sep 21 2011
%E A036349 First term (1) from _David James Sycamore_, Jul 17 2018