cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036351 Number of numbers <= 10^n that are products of two distinct primes.

Original entry on oeis.org

2, 30, 288, 2600, 23313, 209867, 1903878, 17426029, 160785135, 1493766851, 13959963049, 131125938680, 1237087821006, 11715901643501, 111329815346924, 1061057287065814, 10139482896634686, 97123037634329553, 932300026078297246, 8966605849186166511, 86389956292394285653, 833671466547121873095, 8056846659972421004731
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Sum[ PrimePi[n/Prime[i]] - i, {i, PrimePi[ Sqrt[ n]] }]; Table[ f[10^n], {n, 14}] (* Robert G. Wilson v, Feb 07 2012 and modified Dec 28 2016 *)
  • PARI
    a(n)=my(s);forprime(p=2,sqrt(10^n),s+=primepi(10^n\p)); s-binomial(primepi(sqrt(10^n))+1,2) \\ Charles R Greathouse IV, Apr 23 2012
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A036351(n): return -(t:=primepi(s:=isqrt(m:=10**n)))-(t*(t-1)>>1)+sum(primepi(m//k) for k in primerange(1, s+1)) # Chai Wah Wu, Aug 15 2024

Formula

a(n) = (1/2)*(pi(10^(n/2)) + Sum_{i=1..pi(10^n)} pi((10^n-1)/P_i)) -1 = Sum_{i=1..pi(sqrt(10^n))} (pi((10^n-1)/P_i) -1) - binomial(pi(sqrt(10^n)), 2). - Robert G. Wilson v, May 19 2005
a(n) = A036352(n) - A122121(n). - Robert G. Wilson v, Feb 07 2012

Extensions

a(14) from Robert G. Wilson v, May 19 2005
a(15)-a(16) from Donovan Johnson, Oct 16 2010
Corrected a(15) and a(16) by Henri Lifchitz, Nov 11 2012
a(17)-a(19) from Henri Lifchitz, Nov 11 2012
a(20)-a(21) from Henri Lifchitz, Jul 03 2015
a(22)-a(23) from Henri Lifchitz, Nov 09 2024