cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036352 Number of numbers up to 10^n that are products of two primes.

Original entry on oeis.org

4, 34, 299, 2625, 23378, 210035, 1904324, 17427258, 160788536, 1493776443, 13959990342, 131126017178, 1237088048653, 11715902308080, 111329817298881, 1061057292827269, 10139482913717352, 97123037685177087, 932300026230174178, 8966605849641219022, 86389956293761485464, 833671466551239927908, 8056846659984852885191
Offset: 1

Views

Author

Keywords

Crossrefs

Essentially the same as A066265.

Programs

  • Mathematica
    SemiPrimePi[n_] := Sum[ PrimePi[n/Prime@ i] - i + 1, {i, PrimePi@ Sqrt@ n}]; Array[ SemiPrimePi[10^#] &, 14] (* Robert G. Wilson v, Feb 12 2015 *)
  • PARI
    a(n)=my(s);forprime(p=2,sqrt(10^n),s+=primepi(10^n\p)); s-binomial(primepi(sqrt(10^n)),2) \\ Charles R Greathouse IV, Apr 23 2012
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A036352(n): return int((-(t:=primepi(s:=isqrt(m:=10**n)))*(t-1)>>1)+sum(primepi(m//k) for k in primerange(1, s+1))) # Chai Wah Wu, Aug 16 2024

Extensions

a(14) from Robert G. Wilson v, May 16 2005
a(15)-a(16) from Donovan Johnson, Mar 18 2010
a(17)-a(18) from A066265, added by Jens Kruse Andersen, Aug 16 2014
a(19)-a(21) from Henri Lifchitz, Jul 04 2015
a(22)-a(23) from Henri Lifchitz, Nov 09 2024