This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A036361 #37 Mar 02 2024 13:03:10 %S A036361 0,1,1,6,70,1215,27951,799708,27337500,1086190605,49162945645, %T A036361 2496308717826,140489907594114,8678436279296875,583701359488329915, %U A036361 42457773984656284920,3320786296452525792376,277898747312921495246937,24775177557380767822265625 %N A036361 Number of labeled 2-trees with n nodes. %D A036361 F. Harary and E. Palmer, Graphical Enumeration, (1973), p. 30. %H A036361 T. D. Noe, <a href="/A036361/b036361.txt">Table of n, a(n) for n = 1..100</a> %H A036361 L. W. Beineke and R. E. Pipert, <a href="http://dx.doi.org/10.1016/S0021-9800(69)80120-1">The number of labeled k-dimensional trees</a>, J. Comb. Theory 6 (2) (1969) 200-205. Math. Rev. 38 #3182. %H A036361 Allan Bickle, <a href="https://doi.org/10.20429/tag.2024.000105">A Survey of Maximal k-degenerate Graphs and k-Trees</a>, Theory and Applications of Graphs 0 1 (2024) Article 5. %H A036361 T. Fowler, I. Gessel, G. Labelle and P. Leroux, <a href="https://doi.org/10.1006/aama.2001.0771">The specification of 2-trees</a>, Adv. Appl. Math. 28 (2) (2002) 145-168, eq. (18). %H A036361 <a href="/index/Tra#trees">Index entries for sequences related to trees</a> %F A036361 Number of labeled k-trees on n nodes is binomial(n, k) * (k(n-k)+1)^(n-k-2). %p A036361 A036361:=n->binomial(n, 2)*(2*n-3)^(n-4): seq(A036361(n), n=1..30); %t A036361 Table[Binomial[n,2](2n-3)^(n-4),{n,20}] (* _Harvey P. Dale_, Nov 24 2011 *) %o A036361 (Python) %o A036361 def A036361(n): return int(n*(n - 1)*(2*n - 3)**(n - 4)//2) # _Chai Wah Wu_, Feb 03 2022 %Y A036361 Column 3 of A135021. %Y A036361 Cf. A000272 (labeled trees), this sequence (labeled 2-trees), A036362 (labeled 3-trees), A036506 (labeled 4-trees), A000055 (unlabeled trees), A054581 (unlabeled 2-trees). %K A036361 nonn,easy,nice %O A036361 1,4 %A A036361 _N. J. A. Sloane_