cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036368 Number of chiral orthoplex n-ominoes in n-2 space.

This page as a plain text file.
%I A036368 #13 Feb 06 2021 22:29:20
%S A036368 0,0,4,14,37,110,324,888,2368,6336,16874,44414,116181,303362,790157,
%T A036368 2051880,5317599,13764133,35586766,91910082,237183164,611701614,
%U A036368 1576773162,4062606255,10463699696,26942811809,69358469092
%N A036368 Number of chiral orthoplex n-ominoes in n-2 space.
%C A036368 Orthoplex polyominoes are multidimensional polyominoes that do not extend more than two units along any axis.
%F A036368 G.f.: (C^2(x) + C(-x^2))^2/8 - C^2(-x^2)/4 - C(-x^4)/4 + C^5(x)/(2-2C(x)) - (C(x)+C(-x^2))*C^2(-x^2)/(2-2C(-x^2)) where C(x) is the generating function for chiral n-ominoes in n-1 space, one cell labeled in A045648.
%e A036368 a(6)=4 because there are 4 pairs of chiral hexominoes in 2^4 space.
%t A036368 sc[ n_, k_ ] := sc[ n, k ]=c[ n+1-k, 1 ]+If[ n<2k, 0, sc[ n-k, k ](-1)^k ]; c[ 1, 1 ] := 1;
%t A036368 c[ n_, 1 ] := c[ n, 1 ]=Sum[ c[ i, 1 ]sc[ n-1, i ]i, {i, 1, n-1} ]/(n-1);
%t A036368 c[ n_, k_ ] := c[ n, k ]=Sum[ c[ i, 1 ]c[ n-i, k-1 ], {i, 1, n-1} ];
%t A036368 Table[ c[ i, 4 ]/8+Sum[ c[ i, j ], {j, 5, i} ]/2-If[ OddQ[ i ], 0,
%t A036368 c[ i/2, 2 ](-1)^(i/2)/8+If[ OddQ[ i/2 ], 0, c[ i/4, 1 ](-1)^(i/4)/4 ]
%t A036368 +Sum[ c[ i/2, j ](-1)^(i/2), {j, 3, i/2} ]/2 ]+Sum[ c[ j, 1 ]c[ i-2j, 2 ](-1)^j/4
%t A036368 -Sum[ If[ OddQ[ k ], c[ j, (k-1)/2 ]c[ i-2j, 1 ](-1)^j/2, 0 ], {k, 5, i} ],
%t A036368 {j, 1, (i-1)/2} ], {i, 4, 30} ]
%Y A036368 Cf. A045648, A036367.
%K A036368 easy,nice,nonn
%O A036368 4,3
%A A036368 _Robert A. Russell_