This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A036368 #13 Feb 06 2021 22:29:20 %S A036368 0,0,4,14,37,110,324,888,2368,6336,16874,44414,116181,303362,790157, %T A036368 2051880,5317599,13764133,35586766,91910082,237183164,611701614, %U A036368 1576773162,4062606255,10463699696,26942811809,69358469092 %N A036368 Number of chiral orthoplex n-ominoes in n-2 space. %C A036368 Orthoplex polyominoes are multidimensional polyominoes that do not extend more than two units along any axis. %F A036368 G.f.: (C^2(x) + C(-x^2))^2/8 - C^2(-x^2)/4 - C(-x^4)/4 + C^5(x)/(2-2C(x)) - (C(x)+C(-x^2))*C^2(-x^2)/(2-2C(-x^2)) where C(x) is the generating function for chiral n-ominoes in n-1 space, one cell labeled in A045648. %e A036368 a(6)=4 because there are 4 pairs of chiral hexominoes in 2^4 space. %t A036368 sc[ n_, k_ ] := sc[ n, k ]=c[ n+1-k, 1 ]+If[ n<2k, 0, sc[ n-k, k ](-1)^k ]; c[ 1, 1 ] := 1; %t A036368 c[ n_, 1 ] := c[ n, 1 ]=Sum[ c[ i, 1 ]sc[ n-1, i ]i, {i, 1, n-1} ]/(n-1); %t A036368 c[ n_, k_ ] := c[ n, k ]=Sum[ c[ i, 1 ]c[ n-i, k-1 ], {i, 1, n-1} ]; %t A036368 Table[ c[ i, 4 ]/8+Sum[ c[ i, j ], {j, 5, i} ]/2-If[ OddQ[ i ], 0, %t A036368 c[ i/2, 2 ](-1)^(i/2)/8+If[ OddQ[ i/2 ], 0, c[ i/4, 1 ](-1)^(i/4)/4 ] %t A036368 +Sum[ c[ i/2, j ](-1)^(i/2), {j, 3, i/2} ]/2 ]+Sum[ c[ j, 1 ]c[ i-2j, 2 ](-1)^j/4 %t A036368 -Sum[ If[ OddQ[ k ], c[ j, (k-1)/2 ]c[ i-2j, 1 ](-1)^j/2, 0 ], {k, 5, i} ], %t A036368 {j, 1, (i-1)/2} ], {i, 4, 30} ] %Y A036368 Cf. A045648, A036367. %K A036368 easy,nice,nonn %O A036368 4,3 %A A036368 _Robert A. Russell_