This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A036370 #25 Dec 29 2014 17:36:29 %S A036370 1,1,1,1,1,1,1,1,1,1,1,2,3,4,4,5,4,4,3,2,1,1,1,1,1,2,4,7,12,20,31,47, %T A036370 70,99,137,184,239,300,369,432,498,551,594,614,624,601,570,514,453, %U A036370 378,312,238,181,128,89,56,37,20,12,6,3,1,1 %N A036370 Triangle of coefficients of generating function of ternary rooted trees of height at most n. %H A036370 Alois P. Heinz, <a href="/A036370/b036370.txt">Rows n = 0..8, flattened</a> %H A036370 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a> %F A036370 T_{i+1}(z) = 1 +z*(T_i(z)^3/6 +T_i(z^2)*T_i(z)/2 +T_i(z^3)/3); T_0(z) = 1. %e A036370 1; %e A036370 1, 1; %e A036370 1, 1, 1, 1, 1; %e A036370 1, 1, 1, 2, 3, 4, 4, 5, 4, 4, 3, 2, 1, 1; %e A036370 ... %p A036370 T:= proc(n) option remember; local f, g; %p A036370 if n=0 then 1 %p A036370 else f:= z-> add([T(n-1)][i]*z^(i-1), i=1..nops([T(n-1)])); %p A036370 g:= expand(1 +z*(f(z)^3/6 +f(z^2)*f(z)/2 +f(z^3)/3)); %p A036370 seq(coeff(g, z, i), i=0..degree(g, z)) %p A036370 fi %p A036370 end: %p A036370 seq(T(n), n=0..5); # _Alois P. Heinz_, Sep 26 2011 %t A036370 T[n_] := T[n] = Module[{f, g}, If[n == 0, {1}, f[z_] = Sum[T[n-1][[i]]*z^(i-1), {i, 1, Length[T[n-1]]}]; g = Expand[1+z*(f[z]^3/6+f[z^2]*f[z]/2+f[z^3]/3)]; Table[Coefficient [g, z, i], {i, 0, Exponent[g, z]}]]]; Table[T[n], {n, 0, 5}] // Flatten (* _Jean-François Alcover_, Mar 10 2014, after _Alois P. Heinz_ *) %Y A036370 Cf. A036437. %K A036370 nonn,easy,tabf %O A036370 0,12 %A A036370 _N. J. A. Sloane_, Eric Rains (rains(AT)caltech.edu)