cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036373 Number of ternary rooted trees with n nodes and height at most 5.

This page as a plain text file.
%I A036373 #19 Oct 29 2020 03:26:53
%S A036373 1,1,1,2,4,8,16,33,63,121,225,415,749,1344,2365,4129,7106,12104,20354,
%T A036373 33883,55706,90628,145729,231801,364555,567206,872727,1328545,2000536,
%U A036373 2980554,4393287,6407683,9246830,13204526,18657905,26088244
%N A036373 Number of ternary rooted trees with n nodes and height at most 5.
%H A036373 Sean A. Irvine, <a href="/A036373/b036373.txt">Table of n, a(n) for n = 0..121</a>
%H A036373 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>
%F A036373 If T_i(z) = g.f. for ternary trees of height at most i, T_{i+1}(z)=1+z*(T_i(z)^3/6+T_i(z^2)*T_i(z)/2+T_i(z^3)/3); T_0(z) = 1.
%t A036373 T[0] = {1}; T[n_] := T[n] = Module[{f, g}, f[z_] := Sum[T[n - 1][[i]]*z^(i - 1), {i, 1, Length[T[n - 1]]}]; g = 1 + z*(f[z]^3/6 + f[z^2]*f[z]/2 + f[z^3]/3); CoefficientList[g, z]]; A036373 = T[5] (* _Jean-François Alcover_, Jan 19 2016, after _Alois P. Heinz_ (A036370) *)
%Y A036373 Cf. A036370.
%K A036373 nonn,fini,full
%O A036373 0,4
%A A036373 _N. J. A. Sloane_, E. M. Rains (rains(AT)caltech.edu)