A036382 Odd split numbers: have a nontrivial factorization n=ab with a and b coprime, so that L(a) + L(b) <= L(n), where L(x) = A029837(x) = ceiling(log_2(x)).
21, 33, 35, 39, 65, 69, 75, 77, 87, 91, 93, 105, 129, 133, 135, 141, 143, 145, 147, 155, 159, 161, 165, 175, 177, 183, 189, 195, 203, 217, 259, 261, 265, 267, 273, 275, 279, 285, 287, 291, 295, 297, 299, 301, 303, 305, 309, 315, 319, 321, 325, 327, 329, 339
Offset: 1
Keywords
Examples
s = 39 is a split number since s = 39 = 3*13, gcd(3,13)=1 and L(3) + L(13) = 2 + 4 = L(39).
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[1, 340, 2], Function[n, Total@ Boole@ Map[And[Total@ Ceiling@ Log2@ # <= Ceiling@ Log2@ n, CoprimeQ @@ #] &, Map[{#, n/#} &, Rest@ Take[#, Ceiling[Length[#]/2]]]] > 0 &@ Divisors@ n]] (* Michael De Vlieger, Mar 03 2017 *)
Extensions
Name corrected by Michael De Vlieger, Mar 03 2017
Comments