cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036437 Triangle of coefficients of generating function of ternary rooted trees of height exactly n.

This page as a plain text file.
%I A036437 #28 Mar 22 2024 08:56:20
%S A036437 1,1,1,1,1,2,4,4,5,4,4,3,2,1,1,1,3,8,15,27,43,67,97,136,183,239,300,
%T A036437 369,432,498,551,594,614,624,601,570,514,453,378,312,238,181,128,89,
%U A036437 56,37,20,12,6,3,1,1,1,4,13,32,74,155,316,612,1160,2126,3829,6737
%N A036437 Triangle of coefficients of generating function of ternary rooted trees of height exactly n.
%H A036437 Alois P. Heinz, <a href="/A036437/b036437.txt">Rows n = 1..8, flattened</a>
%H A036437 A. T. Balaban, J. W. Kennedy and L. V. Quintas, <a href="https://doi.org/10.1021/ed065p304">The number of alkanes having n carbons and a longest chain of length d</a>, J. Chem. Education, 65 (1988), 304-313.
%H A036437 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>
%F A036437 T_{n}(z) - T_{n-1}(z) (see A036370).
%e A036437 1;
%e A036437 1, 1, 1;
%e A036437 1, 2, 4, 4, 5, 4, 4, 3, 2, 1, 1;
%p A036437 df:= (t, l)-> zip((x,y)->x-y, t, l, 0):
%p A036437 T:= proc(n) option remember; local f, g;
%p A036437       if n=0 then 1
%p A036437     else f:= z-> add([T(n-1)][i]*z^(i-1), i=1..nops([T(n-1)]));
%p A036437          g:= expand(1 +z*(f(z)^3/6 +f(z^2)*f(z)/2 +f(z^3)/3));
%p A036437          seq(coeff(g, z, i), i=0..degree(g, z))
%p A036437       fi
%p A036437     end:
%p A036437 seq(df([T(n)], [T(n-1)])[n+1..-1][], n=1..5); # _Alois P. Heinz_, Sep 26 2011
%t A036437 df[t_, l_] := Plus @@ PadRight[{t, -l}]; T[n_] := T[n] = Module[{f, g}, If[n == 0, {1}, f[z_] := Sum[T[n-1][[i]]*z^(i-1), {i, 1, Length[T[n-1]]}]; g = Expand[1+z*(f[z]^3/6+f[z^2]*f[z]/2+f[z^3]/3)]; Table [Coefficient [g, z, i], {i, 0, Exponent[g, z]}]]]; Table[df[T[n], T[n-1]][[n+1 ;; -1]], {n, 1, 5}] // Flatten (* _Jean-François Alcover_, Jan 30 2014, after _Alois P. Heinz_ *)
%K A036437 nonn,easy,tabf
%O A036437 1,6
%A A036437 _N. J. A. Sloane_, Eric Rains (rains(AT)caltech.edu)