This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A036455 #22 Feb 04 2016 15:58:42 %S A036455 6,8,10,14,15,21,22,26,27,33,34,35,36,38,39,46,51,55,57,58,62,65,69, %T A036455 74,77,82,85,86,87,91,93,94,95,100,106,111,115,118,119,120,122,123, %U A036455 125,129,133,134,141,142,143,145,146,155,158,159,161,166,168,177,178,183 %N A036455 Numbers n such that d(d(n)) is an odd prime, where d(k) is the number of divisors of k. %C A036455 Compare with sequence A007422 and A030513 -- the resemblance is rather strong. Still this sequence is different. For example, 36, 100, 120, and 168 are here. %H A036455 Charles R Greathouse IV, <a href="/A036455/b036455.txt">Table of n, a(n) for n = 1..10000</a> %F A036455 d(d(d(a(n)))) = 2 for all n. %F A036455 A036459(a(n)) = 3. - _Ivan Neretin_, Jan 25 2016 %e A036455 a(15) = 39 and d(39) = 4, d(d(39)) = d(4) = 3 and d(d(d(39))) = 2. After 3 iteration the equilibrium is reached. %p A036455 filter:= proc(n) local r; %p A036455 r:= numtheory:-tau(numtheory:-tau(n)); %p A036455 r::odd and isprime(r) %p A036455 end proc: %p A036455 select(filter, [$1..1000]); # _Robert Israel_, Feb 02 2016 %t A036455 fQ[n_] := Module[{d2 = DivisorSigma[0, DivisorSigma[0, n]]}, d2 > 2 && PrimeQ[d2]]; Select[Range[200], fQ] (* _T. D. Noe_, Jan 22 2013 *) %o A036455 (PARI) is(n)=isprime(n=numdiv(numdiv(n))) && n>2 \\ _Charles R Greathouse IV_, Jan 22 2013 %Y A036455 Cf. A000005, A007422, A030513, A036450, A036452, A036454, A036456, A036457, A036458. %K A036455 nonn %O A036455 1,1 %A A036455 _Labos Elemer_ %E A036455 Definition clarified by _R. J. Mathar_ and _Charles R Greathouse IV_, Jan 22 2013