A036459 Number of iterations required to reach stationary value when repeatedly applying d, the number of divisors function (A000005).
0, 0, 1, 2, 1, 3, 1, 3, 2, 3, 1, 4, 1, 3, 3, 2, 1, 4, 1, 4, 3, 3, 1, 4, 2, 3, 3, 4, 1, 4, 1, 4, 3, 3, 3, 3, 1, 3, 3, 4, 1, 4, 1, 4, 4, 3, 1, 4, 2, 4, 3, 4, 1, 4, 3, 4, 3, 3, 1, 5, 1, 3, 4, 2, 3, 4, 1, 4, 3, 4, 1, 5, 1, 3, 4, 4, 3, 4, 1, 4, 2, 3, 1, 5, 3, 3, 3, 4, 1, 5, 3, 4, 3, 3, 3, 5, 1, 4, 4
Offset: 1
Keywords
Examples
If n=8, then d(8)=4, d(d(8))=3, d(d(d(8)))=2, which means that a(n)=3. In terms of the number of steps required for convergence, the distance of n from the d-equilibrium is expressed by a(n). A similar method is used in A018194.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- B. L. Mayer and L. H. A. Monteiro, On the divisors of natural and happy numbers: a study based on entropy and graphs, AIMS Mathematics (2023) Vol. 8, Issue 6, 13411-13424.
Programs
-
Mathematica
Table[ Length[ FixedPointList[ DivisorSigma[0, # ] &, n]] - 2, {n, 105}] (* Robert G. Wilson v, Mar 11 2005 *)
-
PARI
for(x = 1,150, for(a=0,15, if(a==0,d=x, if(d<3,print(a-1),d=numdiv(d) )) ))
-
PARI
a(n)=my(t);while(n>2,n=numdiv(n);t++);t \\ Charles R Greathouse IV, Apr 07 2012
Formula
a(n) = a(d(n)) + 1 if n > 2.
a(n) = 1 iff n is an odd prime.
Comments