cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036483 a(n) = partition(11n+10) mod 11.

This page as a plain text file.
%I A036483 #12 Aug 01 2025 06:35:49
%S A036483 9,0,0,0,0,9,9,0,0,0,9,0,9,0,0,9,9,9,9,0,9,9,9,9,9,9,9,9,9,9,7,9,7,7,
%T A036483 7,7,7,7,7,7,5,7,5,7,5,5,5,5,3,5,3,3,3,3,1,1,1,1,1,1,8,10,10,10,8,8,6,
%U A036483 8,6,6,4,4,2,4,2,2,0,0,9,0,7,7,5,5,3,3,1,1,10,10,6,8,6,4,2,2,9,0,7,7,3,3
%N A036483 a(n) = partition(11n+10) mod 11.
%H A036483 Amiram Eldar, <a href="/A036483/b036483.txt">Table of n, a(n) for n = 0..10000</a>
%F A036483 a(n) = A020919(11*n + 10). - _Amiram Eldar_, Aug 01 2025
%t A036483 a[n_] := Mod[PartitionsP[11*n + 10], 11]; Array[a, 100, 0] (* _Amiram Eldar_, Aug 01 2025 *)
%o A036483 (PARI) a(n) = numbpart(11*n + 10) % 11; \\ _Amiram Eldar_, Aug 01 2025
%Y A036483 Cf. A000041, A020919.
%Y A036483 partition(11n+k): A036485 (k=0), A036475 (k=1), A036476 (k=2), A036477 (k=3), A036478 (k=4), A036479 (k=5), A000004 (k=6), A036480 (k=7), A036481 (k=8), A036482 (k=9), this sequence (k=10).
%K A036483 nonn,easy
%O A036483 0,1
%A A036483 _David W. Wilson_
%E A036483 Offset corrected by _Amiram Eldar_, Aug 01 2025