This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A036501 #23 Feb 16 2025 08:32:37 %S A036501 1,1,1,2,4,5,1,1,1,2,1,1,1,1,1,1,1,1 %N A036501 Number of inequivalent Golomb rulers with n marks and shortest length. %C A036501 From _Gus Wiseman_, May 31 2019: (Start) %C A036501 A Golomb ruler of length n is a subset of {0..n} containing 0 and n and such that every pair of distinct terms has a different difference. For example, the a(2) = 1 through a(8) = 1 Golomb rulers are: %C A036501 2: {0,1} %C A036501 3: {0,1,3} %C A036501 4: {0,1,4,6} %C A036501 5: {0,1,4,9,11} %C A036501 5: {0,2,7,8,11} %C A036501 6: {0,1,4,10,12,17} %C A036501 6: {0,1,4,10,15,17} %C A036501 6: {0,1,8,11,13,17} %C A036501 6: {0,1,8,12,14,17} %C A036501 7: {0,1,4,10,18,23,25} %C A036501 7: {0,1,7,11,20,23,25} %C A036501 7: {0,2,3,10,16,21,25} %C A036501 7: {0,2,7,13,21,22,25} %C A036501 7: {0,1,11,16,19,23,25} %C A036501 8: {0,1,4,9,15,22,32,34} %C A036501 Also half the number of length-(n - 1) compositions of A003022(n) such that every consecutive subsequence has a different sum. For example, the a(2) = 1 through a(8) = 1 compositions are (A = 10): %C A036501 2: (1) %C A036501 3: (1,2) %C A036501 4: (1,3,2) %C A036501 5: (1,3,5,2) %C A036501 5: (2,5,1,3) %C A036501 6: (1,3,6,2,5) %C A036501 6: (1,3,6,5,2) %C A036501 6: (1,7,3,2,4) %C A036501 6: (1,7,4,2,3) %C A036501 7: (1,3,6,8,5,2) %C A036501 7: (1,6,4,9,3,2) %C A036501 7: (2,1,7,6,5,4) %C A036501 7: (2,5,6,8,1,3) %C A036501 7: (1,A,5,3,4,2) %C A036501 8: (1,3,5,6,7,A,2) %C A036501 (End) %H A036501 Anonymous, <a href="http://members.aol.com/golomb20">In Search Of The Optimal 20, 21 and 22 Mark Golomb Rulers</a> %H A036501 Distributed.Net, <a href="http://www.distributed.net/ogr">Project OGR</a> %H A036501 J. B. Shearer, <a href="http://www.research.ibm.com/people/s/shearer/gropt.html">Table of known optimal Golomb rulers</a> %H A036501 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GolombRuler.html">Golomb Ruler</a> %H A036501 <a href="/index/Go#Golomb">Index entries for sequences related to Golomb rulers</a> %Y A036501 Cf. A003022, A039953, A054578, A108917, A143823, A169942, A270813, A325677, A325683. %K A036501 nonn,hard,nice,more %O A036501 2,4 %A A036501 _N. J. A. Sloane_