A036541 Deficit of central binomial coefficients in terms of number of prime factors: a(n) shows how many fewer prime factors the n-th central binomial coefficient has than n!.
0, 0, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 4, 4, 3, 3, 5, 5, 6, 6, 6, 5, 4, 4, 5, 5, 5, 5, 6, 6, 7, 7, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9, 8
Offset: 1
Keywords
Examples
a(1000) = PrimePi(1000) - omega(binomial(1000, 500)) = 168 - 116 = 52.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 1000: # to get a(1) .. a(N) G:= proc(p,n) local m,Ln,Lm; m:= floor(n/2); Ln:= convert(n,base,p); Lm:= convert(m,base,p); hastype(Ln[1..nops(Lm)]-Lm,negative) end proc: S[1]:= {}: S[2]:= {}: for n from 3 to N do if n::even then if n = 2^ilog2(n) then S[n]:= S[n-1] minus {2} else S[n]:= S[n-1] fi else S[n]:= (S[n-1] minus select(G,numtheory:-factorset(n),n)) union remove(G,numtheory:-factorset((n+1)/2),n); fi; od: seq(nops(S[i]),i=1..N); # Robert Israel, May 31 2016
-
Mathematica
Table[PrimePi@ n - PrimeNu[Binomial[n, Floor[n/2]]], {n, 105}] (* Michael De Vlieger, Jun 01 2016 *)
Formula
a(n) = omega(n!) - omega(binomial(n, floor(n/2))) = PrimePi(n) - omega(binomial(n, floor(n/2))).
Comments