cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036572 Number of tetrahedra in largest triangulation of polygonal prism with regular polygonal base.

This page as a plain text file.
%I A036572 #26 Sep 08 2022 08:44:52
%S A036572 3,6,10,14,19,24,30,36,43,50,58,66,75,84,94,104,115,126,138,150,163,
%T A036572 176,190,204,219,234,250,266,283,300,318,336,355,374,394,414,435,456,
%U A036572 478,500,523,546,570,594,619,644,670,696,723,750,778,806
%N A036572 Number of tetrahedra in largest triangulation of polygonal prism with regular polygonal base.
%H A036572 Vincenzo Librandi, <a href="/A036572/b036572.txt">Table of n, a(n) for n = 3..1000</a>
%H A036572 J. A. De Loera, F. Santos and F. Takeuchi, <a href="https://doi.org/10.1137/S0895480199366238">Extremal properties of optimal dissections of convex polytopes</a>, SIAM Journal Discrete Mathematics, 14, 2001, 143-161.
%H A036572 M. Develin, <a href="http://arXiv.org/abs/math.CO/0309220">Maximal triangulations of a regular prism</a>
%H A036572 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-2,1).
%F A036572 a(n) = ceiling((n*n + 6*n - 16)/4) = A004116(n) - 3. - _Ralf Stephan_, Oct 13 2003
%F A036572 From _Colin Barker_, Sep 05 2013: (Start)
%F A036572 a(n) = (-31 - (-1)^n + 12*n + 2*n^2)/8.
%F A036572 a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
%F A036572 G.f.: x^3*(2*x^2-3) / ((x-1)^3*(x+1)). (End)
%t A036572 CoefficientList[Series[(2 x^2 - 3)/((x - 1)^3 (x + 1)), {x, 0, 60}], x] (* _Vincenzo Librandi_, Oct 21 2013 *)
%t A036572 LinearRecurrence[{2,0,-2,1},{3,6,10,14},60] (* _Harvey P. Dale_, Jun 05 2017 *)
%o A036572 (PARI) Vec(x^3*(2*x^2-3)/((x-1)^3*(x+1)) + O(x^100)) \\ _Colin Barker_, Sep 05 2013
%o A036572 (Magma) [Ceiling((n*n+6*n-16)/4): n in [3..60]]; // _Vincenzo Librandi_, Oct 21 2013
%Y A036572 Cf. A036573.
%K A036572 nonn,easy
%O A036572 3,1
%A A036572 Jesus De Loera (deloera(AT)math.ucdavis.edu)
%E A036572 More terms from _Ralf Stephan_, Oct 13 2003