cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036578 Ternary Thue-Morse sequence: closed under a->abc, b->ac, c->b.

This page as a plain text file.
%I A036578 #22 Jul 08 2025 21:45:31
%S A036578 1,0,2,1,2,0,1,0,2,0,1,2,1,0,2,1,2,0,1,2,1,0,2,0,1,0,2,1,2,0,1,0,2,0,
%T A036578 1,2,1,0,2,0,1,0,2,1,2,0,1,2,1,0,2,1,2,0,1,0,2,0,1,2,1,0,2,1,2,0,1,2,
%U A036578 1,0,2,0,1,0,2,1,2,0,1,2,1,0,2,1,2,0,1,0,2,0,1,2,1,0,2,0,1,0,2
%N A036578 Ternary Thue-Morse sequence: closed under a->abc, b->ac, c->b.
%C A036578 Trajectory of 1 under the morphism 0 -> 12, 1 -> 102 & 2 -> 0. - _Robert G. Wilson v_, Apr 06 2008
%D A036578 Brian Hayes, Group Theory in the Bedroom and other Mathematical Diversions, Hill and Wang, A division of Farrar, Straus and Giroux, NY, 2008, pages 190-194.
%D A036578 M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 26.
%H A036578 Aviezri S. Fraenkel, <a href="http://dx.doi.org/10.1016/j.disc.2011.03.032">The vile, dopey, evil and odious game players</a>, Discrete Math. 312 (1) (2012) 42-46.
%H A036578 <a href="/index/Fi#FIXEDPOINTS">Index entries for sequences that are fixed points of mappings</a>
%t A036578 Nest[ # /. {0 -> {1, 2}, 1 -> {1, 0, 2}, 2 -> {0}} &, {0}, 7] // Flatten (* _Robert G. Wilson v_, Apr 06 2008 *)
%Y A036578 Cf. A005679, A036577, A036579, A036580, A036581, A036582, A036583, A036584, A036585, A036586.
%K A036578 nonn
%O A036578 0,3
%A A036578 _N. J. A. Sloane_