cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036602 Triangle of coefficients of generating function of binary rooted trees of height at most n.

This page as a plain text file.
%I A036602 #28 Feb 14 2021 13:02:51
%S A036602 1,1,1,1,1,1,1,1,1,1,2,2,2,1,1,1,1,1,2,3,5,6,8,8,9,7,7,4,3,1,1,1,1,1,
%T A036602 2,3,6,10,17,25,38,52,73,93,121,143,172,187,205,202,201,177,158,123,
%U A036602 99,66,47,26,17,7,4,1,1,1,1,1,2,3,6,11,22,39,70,118,200,324,526
%N A036602 Triangle of coefficients of generating function of binary rooted trees of height at most n.
%H A036602 Alois P. Heinz, <a href="/A036602/b036602.txt">Rows n = 0..12, flattened</a>
%H A036602 E. M. Rains and N. J. A. Sloane, <a href="https://cs.uwaterloo.ca/journals/JIS/cayley.html">On Cayley's Enumeration of Alkanes (or 4-Valent Trees)</a>, J. Integer Sequences, Vol. 2 (1999), Article 99.1.1.
%H A036602 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>
%e A036602 Triangle begins:
%e A036602 1
%e A036602 1, 1;
%e A036602 1, 1, 1, 1;
%e A036602 1, 1, 1, 2, 2, 2,  1,  1;
%e A036602 1, 1, 1, 2, 3, 5,  6,  8,  8,  9,   7,   7,   4,    3,    1,    1;
%e A036602 1, 1, 1, 2, 3, 6, 10, 17, 25, 38,  52,  73,  93,  121,  143,  172,  187, ...
%e A036602 1, 1, 1, 2, 3, 6, 11, 22, 39, 70, 118, 200, 324,  526,  825, 1290, 1958, ...
%e A036602 1, 1, 1, 2, 3, 6, 11, 23, 45, 90, 171, 325, 598, 1097, 1972, 3531, 6225, ...
%p A036602 b:= proc(n, h) option remember; `if`(n<2, n, `if`(h<1, 0, `if`(n::odd, 0,
%p A036602      (t-> t*(1-t)/2)(b(n/2, h-1)))+add(b(i, h-1)*b(n-i, h-1), i=1..n/2)))
%p A036602     end:
%p A036602 A:= (n, k)-> b(k+1, n):
%p A036602 seq(seq(A(n, k), k=0..2^n-1), n=0..6);  # _Alois P. Heinz_, Sep 08 2017
%t A036602 b[n_, h_] := b[n, h] = If[n < 2, n, If[h < 1, 0, If[OddQ[n], 0, Function[t, t*(1-t)/2][b[n/2, h-1]]] + Sum[b[i, h-1]*b[n-i, h-1], {i, 1, n/2}]]];
%t A036602 A[n_, k_] := b[k+1, n];
%t A036602 Table[Table[A[n, k], {k, 0, 2^n-1}], {n, 0, 6}] // Flatten (* _Jean-François Alcover_, Feb 14 2021, after _Alois P. Heinz_ *)
%Y A036602 Cf. A001190, A036587, A036588, A036589, A036590, A036591, A036592.
%K A036602 nonn,tabf,nice,easy
%O A036602 0,11
%A A036602 _N. J. A. Sloane_