This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A036602 #28 Feb 14 2021 13:02:51 %S A036602 1,1,1,1,1,1,1,1,1,1,2,2,2,1,1,1,1,1,2,3,5,6,8,8,9,7,7,4,3,1,1,1,1,1, %T A036602 2,3,6,10,17,25,38,52,73,93,121,143,172,187,205,202,201,177,158,123, %U A036602 99,66,47,26,17,7,4,1,1,1,1,1,2,3,6,11,22,39,70,118,200,324,526 %N A036602 Triangle of coefficients of generating function of binary rooted trees of height at most n. %H A036602 Alois P. Heinz, <a href="/A036602/b036602.txt">Rows n = 0..12, flattened</a> %H A036602 E. M. Rains and N. J. A. Sloane, <a href="https://cs.uwaterloo.ca/journals/JIS/cayley.html">On Cayley's Enumeration of Alkanes (or 4-Valent Trees)</a>, J. Integer Sequences, Vol. 2 (1999), Article 99.1.1. %H A036602 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a> %e A036602 Triangle begins: %e A036602 1 %e A036602 1, 1; %e A036602 1, 1, 1, 1; %e A036602 1, 1, 1, 2, 2, 2, 1, 1; %e A036602 1, 1, 1, 2, 3, 5, 6, 8, 8, 9, 7, 7, 4, 3, 1, 1; %e A036602 1, 1, 1, 2, 3, 6, 10, 17, 25, 38, 52, 73, 93, 121, 143, 172, 187, ... %e A036602 1, 1, 1, 2, 3, 6, 11, 22, 39, 70, 118, 200, 324, 526, 825, 1290, 1958, ... %e A036602 1, 1, 1, 2, 3, 6, 11, 23, 45, 90, 171, 325, 598, 1097, 1972, 3531, 6225, ... %p A036602 b:= proc(n, h) option remember; `if`(n<2, n, `if`(h<1, 0, `if`(n::odd, 0, %p A036602 (t-> t*(1-t)/2)(b(n/2, h-1)))+add(b(i, h-1)*b(n-i, h-1), i=1..n/2))) %p A036602 end: %p A036602 A:= (n, k)-> b(k+1, n): %p A036602 seq(seq(A(n, k), k=0..2^n-1), n=0..6); # _Alois P. Heinz_, Sep 08 2017 %t A036602 b[n_, h_] := b[n, h] = If[n < 2, n, If[h < 1, 0, If[OddQ[n], 0, Function[t, t*(1-t)/2][b[n/2, h-1]]] + Sum[b[i, h-1]*b[n-i, h-1], {i, 1, n/2}]]]; %t A036602 A[n_, k_] := b[k+1, n]; %t A036602 Table[Table[A[n, k], {k, 0, 2^n-1}], {n, 0, 6}] // Flatten (* _Jean-François Alcover_, Feb 14 2021, after _Alois P. Heinz_ *) %Y A036602 Cf. A001190, A036587, A036588, A036589, A036590, A036591, A036592. %K A036602 nonn,tabf,nice,easy %O A036602 0,11 %A A036602 _N. J. A. Sloane_